UNT Libraries Government Documents Department - 268,607 Matching Results

Search Results

1.5D Quasilinear Model for Alpha Particle-TAE Interaction in ARIES ACT-I

Description: We study the TAE interaction with alpha particle fusion products in ARIES ACT-I using the 1.5D quasilinear model. 1.5D uses linear analytic expressions for growth and damping rates of TAE modes evaluated using TRANSP pro les to calculates the relaxation of pressure pro les. NOVA- K simulations are conducted to validate the analytic dependancies of the rates, and to normalize their absolute value. The low dimensionality of the model permits calculating loss diagrams in large parameter spaces.
Date: January 30, 2013
Creator: Ghantous, K.; Gorelenkov, N. N.; Kessel, C. & Poli, F.


Description: The purpose of this task was to determine if mixing was an issue for the entrainment and dispersion of the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) solvent in the Defense Waste Processing Facility (DWPF) Strip Effluent Feed Tank (SEFT). The MCU strip effluent stream containing the Cs removed during salt processing will be transferred to the DWPF for immobilization in HLW glass. In lab-scale DWPF chemical process cell testing, mixing of the solvent in the dilute nitric acid solution proved problematic, and the Savannah River National Laboratory (SRNL) was requested to perform scaled SEFT mixing tests to evaluate whether the problem was symptomatic of the lab-scale set-up or of the solvent. The solvent levels tested were 228 and 235 ppm, which represented levels near the estimated DWPF solvent limit of 239 ppm in 0.001M HNO{sub 3} solution. The 239 ppm limit was calculated by Norato in X-CLC-S-00141. The general approach for the mixing investigation was to: (1) Investigate the use of fluorescent dyes to aid in observing the mixing behavior. Evaluate and compare the physical properties of the fluorescent dyed MCU solvents to the baseline Oak Ridge CSSX solvent. Based on the data, use the dyed MCU solvent that best approximates the physical properties. (2) Use approximately a 1/6th linear scale of the SEFT to replicate the internal configuration for DWPF mixing. (3) Determine agitator speed(s) for scaled testing based on the DWPF SEFT mixing speed. (4) Perform mixing tests using the 1/6th SEFT and determine any mixing issues (entrainment/dispersion, accumulation, adhesion) through visual observations and by pulling samples to assess uniformity. The mixing tests used MCU solvent fabricated at SRNL blended with Risk Reactor DFSB-K43 fluorescent dye. This dyed SRNL MCU solvent had equivalent physical properties important to mixing as compared to the Oak Ridge baseline solvent, ...
Date: February 1, 2006
Creator: Hansen, E.

1-D Equilibrium Discrete Diffusion Monte Carlo

Description: We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.
Date: August 2000
Creator: Evans, T. M.; Urbatsch, T. J. & Lichtenstein, H.

1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

Description: One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of state (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 to 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.
Date: March 19, 2010
Creator: Zylstra, A; Barnard, J J & More, R M

1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

Description: One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of tate (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 o 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.
Date: December 23, 2009
Creator: Zylstra, A. B.; Barnard, J. J. & More, R. M.

1 GeV CW nonscaling FFAG for ADS, and magnet parameters

Description: Multi-MW proton driver capability remains a challenging, critical technology for many core HEP programs, particularly the neutrino ones such as the Muon Collider and Neutrino factory, and for high-profile energy applications such as Accelerator Driven Subcritical Reactors (ADS) and Accelerator Transmutation of Waste for nuclear power and waste management. Work is focused almost exclusively on an SRF linac, as, to date, no re-circulating accelerator can attain the 10-20 MW capability necessary for the nuclear applications. Recently, the concept of isochronous orbits has been explored and developed for nonscaling FFAGs using powerful new methodologies in FFAG accelerator design. Work is progressing on a stable, high-intensity, 1 GeV isochronous FFAG. Initial specifications of novel magnets with the nonlinear radial fields required to support isochronous operation are also reported here.
Date: May 20, 2012
Creator: Johnstone, C.; Meot, F.; Snopok, P. & Weng, W.

1-GeV Linac Upgrade Study at Fermilab

Description: A linac injector for a new proton source complex at Fermilab is assumed to have a kinetic energy of 1 GeV. This linac would be sized to accelerate 100 mA of H{sup -} beam in a 200 microsecond pulse at a 15 Hz repetition rate. This would be adequate to produce {approximately}10{sup 14} protons per pulse allowing for future improvements of the new proton source complex. An alternate proposal is to add 600 MeV of side coupled cavity linac at 805 MHz to the existing 400 MeV Linac. This addition may either be in a new location or use the present Booster tunnel. A discussion of these possibilities will be given.
Date: September 1998
Creator: Popovic, M.; Moretti, A.; Noble, R. & Schmidt, C. W.

A 1-kW power demonstration from the advanced free electron laser

Description: This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The main objective of this project was to engineer and procure an electron beamline compatible with the operation of a 1-kW free-electron laser (FEL). Another major task is the physics design of the electron beam line from the end of the wiggler to the electron beam dump. This task is especially difficult because electron beam is expected to have 20 kW of average power and to simultaneously have a 25% energy spread. The project goals were accomplished. The high-power electron design was completed. All of the hardware necessary for high-power operation was designed and procured.
Date: August 1997
Creator: Sheffield, R. L.; Conner, C. A. & Fortgang, C. M.

1/m<sub>c</sub> Terms in lambda<sup>+</sup><sub>c</sub> Semileptonic Decays

Description: We use the heavy quark effective theory to investigate the form factors that describe the semileptonic decays lambda<sup>+</sup><sub>c</sub> -> lambda e<sup>+</sup> nu, to order 1/m<sub>c</sub>. We find that a total of four form factors are needed to this order, in contrast with two form factors to leading order, and six form factors in the most general case. We point out some relationships that arise among the general form factors.
Date: February 1, 1992
Creator: Roberts, Winston

O(1/M{sup 3}) effects for heavy-light mesons in lattice NRQCD

Description: The masses of spin-singlet and spin-triplet S-wave mesons containing a single heavy quark are computed in the quenched approximation. The light quark action and gauge field action are both classically-improved and tadpole-improved, and the couplings to the heavy quark are organized by the 1/M expansion of tadpole-improved NRQCD. At each of two lattice spacings, near 0.22fm and 0.26fm, meson masses are obtained for heavy quarks spanning the region between charmed and bottom mesons. Results up to O(1/M), O(1/M{sup 2})and O(1/M{sup 3}) are displayed separately, so that the convergence of the heavy quark expansion can be discussed. Also, the effect of each term in the O(1/M{sup 3}) contribution is computed individually. For bottom mesons the 1/M-expansion appears to be satisfactory, but the situation for charmed mesons is less clear.
Date: March 1998
Creator: Lewis, Randy & Woloshyn, R. M.

1: Mass asymmetric fission barriers for {sup 98}Mo; 2: Synthesis and characterization of actinide-specific chelating agents

Description: Excitation functions have been measured for complex fragment emission from the compound nucleus {sup 98}Mo, produced by the reaction of {sup 86}Kr with {sup 12}C. Mass asymmetric fission barriers have been obtained by fitting the excitation functions with a transition state formalism. The extracted barriers are {approximately} 5.7 MeV higher, on average, than the calculations of the Rotating Finite Range Model (RFRM). These data clearly show an isospin dependence of the conditional barriers when compared with the extracted barriers from {sup 90}Mo and {sup 94}Mo. Eleven different liquid/liquid extractants were synthesized based upon the chelating moieties 3,2-HOPO and 3,4-HOPO; additionally, two liquid/liquid extractants based upon the 1,2-HOPO chelating moiety were obtained for extraction studies. The Pu(IV) extractions, quite surprisingly, yielded results that were very different from the Fe(III) extractions. The first trend remained the same: the 1,2-HOPOs were the best extractants, followed closely by the 3,2-HOPOs, followed by the 3,4-HOPOs; but in these Pu(IV) extractions the 3,4-HOPOs performed much better than in the Fe(III) extractions. 129 refs.
Date: August 1, 1996
Creator: Veeck, A. C.


Description: This paper describes electrical design criteria and first operational results a 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt-peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. A review of these design parameters and the first results of the performance characteristics will be presented.
Date: June 1, 2001
Creator: REASS, W.A.; DOSS, J.D. & GRIBBLE, R.F.

A-01 metals in stormwater runoff evaluation

Description: As a part of the A-01 investigation required by the NPDES permit, an investigation was performed to ascertain the concentrations of metals specifically copper (Cu), lead (Pb), and zinc (Zn) in stormwater being discharged through the outfall. This information would indicate whether all water being discharged would have to be treated or if only a portion of the discharged stormwater would have to be treated. A study was designed to accomplish this. The first goal was to determine if the metal concentrations increased, decreased, or remained the same as flow increased during a rain event. The second goal was to determine if the concentrations in the storm water were due to dissolved. The third goal was to obtain background data to ascertain if effluent credits could be gained due to naturally occurring metals.Samples from this study were analyzed and indicate that the copper and lead values increase as the flow increases while the zinc values remain essentially the same regardless of the flow rate. Analyses of samples for total metals, dissolved metals, TSS, and metals in solids was complicated because in all cases metals contamination was found in the filters themselves. Some conclusions can be derived if this problem is taken into account when analyzing the data. Copper concentrations in the total and dissolved fractions as well as the TSS concentrations followed the hydrograph at this outfall but the copper in solids concentration appeared to peak in the first flush and decline to nondetectable rapidly over the course of the storm event. Lead was present in the total analysis but not present in the dissolved fraction or the solids fraction of the samples. The data for zinc was interesting in that the dissolved fractions were higher than the total fraction in three out of four samples. This is probably due ...
Date: November 6, 1997
Creator: Eldridge, L. L.

1 MeV electron irradiation of solid Xe nanoclusters in Al : an in-situ HRTEM study.

Description: Thin film samples of a simple embedded nanocluster system consisting of solid Xe precipitates in Al have been subjected to 1 MeV electron irradiation in a high-voltage electron microscope. High-resolution images have been recorded on videotape in order to monitor the changes to the system resulting from the passage of electrons through the film. Inspection of the video recordings (in some cases frame-by-frame) reveals that complex, rapid processes occur under the electron beam. These include, movement of small clusters, coalescence of neighboring clusters, shape changes, the apparent melting and resolidification of the Xe, and the creation and annealing of extended defects within the Xe lattice. A tentative interpretation of some of the observations is presented in terms of the electron-induced displacement processes at the surface of the clusters.
Date: December 5, 1997
Creator: Donnelly, S. E.; Furuya, K.; Song, M.; Birtcher, R. C. & Allen, C. W.

1 mil gold bond wire study.

Description: In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.
Date: May 1, 2013
Creator: Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W. & Rutherford, Brian Milne


Description: A test stand for the investigation of 1+-n+ charge boosting using an ECR ion sources is currently being assembled at the Texas A&M Cyclotron Institute. The ultimate goal is to relate the charge-boosting of ions of stable species to possible charge-boosting of ions of radioactive species extracted from the diverse, low-charge-state ion sources developed for radioactive ion beams.
Date: April 7, 2006
Creator: May, Donald P.

1 nA beam position monitoring system

Description: A system has been developed at Jefferson Lab for measuring transverse position of very low current beams delivered to the Experimental Hall B of the Continuous Electron Beam Accelerator Facility (CEBAF). At the heart of the system is a position sensitive cavity operating at 1497 MHz. The cavity utilizes a unique design which achieves a high sensitivity to beam position at a relatively low cavity Q. The cavity output RF signal is processed using a down-converter and a commercial lock-in amplifier operating at 100 kHz. The system interfaces with a VME based EPICS control system using the IEEE, 488 bus. The main features of the system are simple and robust design, and wide dynamic range capable of handling beam currents from 1 nA to 1000 nA with an expected resolution better than 100 {mu}m. This paper outlines the design of the system.
Date: June 1, 1997
Creator: Ursic, R.; Flood, R. & Piller, C.

1 Outreach, Education and Domestic Market Enhancement 2 Export Promotion and Assistance

Description: Geothermal Energy Association supports the US geothermal industry in its efforts to bring more clean geothermal energy on-line throughout the world. Activities designed to accomplish this goal include: (1) developing and maintaining data bases, web pages, (2) commissioning of special studies and reports, (3) preparing, printing and distributing brochures and newsletters, (4) developing exhibits and displays, and participating in trade shows, (5) designing, producing and disseminating audio-video materials, (6) monitoring and coordinating programs carried out by US DOE and other Federal agencies, (7) holding workshops to facilitate communication between researchers and industry and to encourage their recognition of emerging markets for geothermal technology, (8) attending conferences, making speeches and presentation, and otherwise interacting with environmental and other renewable energy organizations and coalitions, (9) hosting events in Washington, DC and other appropriate locations to educate Federal, State and local representatives, environmental groups, the news media, and other about the status and potential of geothermal energy, (10) conducting member services such as the preparation and distribution of a member newsletter related to operating and maintaining s useful and viable association, and (11) performing similar kinds of activities designed to inform others about geothermal energy. The activities of the export promotion aim to assist industry in accomplishing the goal of successfully penetrating and developing energy in country with existing geothermal resources and a desire to develop them. Activities including in export promotion are: (1)needs analysis and assessment involve monitoring the progress of developing markets and projects overseas and working with US industry to determine what future activities by GEA would be of greatest assistance, (2) outreach includes the preparation and dissemination of brochures and videos for foreign professionals, officials and decision-makers as well as presentations of information of the geothermal technology and the capabilities of the US geothermal industry, (3) Market conditioning involves ...
Date: March 15, 2004
Creator: Geothermal Energy Association