UNT Libraries Government Documents Department - 433,324 Matching Results

Search Results

On wakefields with two-dimensional planar geometry
In order to reach higher acceleration gradients in linear accelerators, it is advantageous to use a higher accelerating RF frequency, which in turn requires smaller accelerating structures. As the structure size becomes smaller, rectangular structures become increasingly interesting because they are easier to construct than cylindrically symmetric ones. One drawback of small structures, however, is that the wakefields generated by the beam in such structures tend to be strong. Recently, it has been suggested that one way of ameliorating this problem is to use rectangular structures that are very flat and to use flat beams. In the limiting case of a very flat planar geometry, the problem resembles a purely two-dimensional (2-D) problem, the wakefields of which have been studied.
On Water Flow in Hot Fractured Rock -- A Sensitivity Study on theImpact of Fracture-Matrix Heat Transfer
Dual-continuum models have been widely used in modeling flowand transport in fractured porous rocks. Among many other applications,dual-continuum approaches were utilized in predictive models of thethermal-hydrological conditions near emplacement tunnels (drifts) atYucca Mountain, Nevada, the proposed site for a radioactive wasterepository in the U.S. In unsaturated formations such as those at YuccaMountain, the magnitude of mass and heat exchange between the twocontinua fracture network and matrix is largely dependent on the flowcharacteristics in the fractures, because channelized finger-type flowstrongly reduces the interface area between the matrix surfaces and theflowing liquid. This effect may have important implications, for example,during the time period that the fractured rock near the repository driftswould be heated above the boiling point of water. Depending on themagnitude of heat transfer from the matrix, water percolating down thefractures will either boil off in the hot rock region above drifts or maypenetrate all the way to the drift walls and possibly seep into the opencavities. In this paper, we describe a sensitivity analysis using avariety of approaches to treat fracture-matrix interaction in athree-dimensional dual-continuum setting. Our simulation example is alaboratory heater experiment described in the literature that providesevidence of rapid water flow in fractures, leading to drift seepagedespite above-boiling conditions in the adjacent fractured rock. Theexperimental finding can only be reproduced when the interface area forheat transfer between the matrix and fracture continua is reduced toaccount for flow channeling.
On weak decays of heavy flavors, mixing and CP violation
Detailed studies of weak decays serve not only to confirm the Standard Model, but possess also a high sensitivity to New Physics: tau and top decays are discussed in this vein, with some short remarks on beauty and charm. The sensitivity to New Physics is even higher in delicate phenomena like mixing and CP violation: a fairly detailed discussion on K/sup 0/ - anti K/sup 0/, D/sup 0/ - anti D/sup 0/, and B/sup 0/ - anti B/sup 0/ mixing and on CP violation in K/sup 0/ and B decays is presented. 48 refs., 11 figs.
On Wind Tunnel Tests and Computations Concerning the Problem of Shrouded Propellers
"Results of measurements on a shrouded propeller are given. The propeller is designed for the high ratio of advance and high thrust loading. The effect of the shape of propeller and shroud upon the aerodynamic coefficients of the propulsion unit can be seen from the results" (p. 1).
On Yang--Mills Theories with Chiral Matter at Strong Coupling
Strong coupling dynamics of Yang-Mills theories with chiral fermion content remained largely elusive despite much effort over the years. In this work, we propose a dynamical framework in which we can address non-perturbative properties of chiral, non-supersymmetric gauge theories, in particular, chiral quiver theories on S{sub 1} x R{sub 3}. Double-trace deformations are used to stabilize the center-symmetric vacuum. This allows one to smoothly connect smaller(S{sub 1}) to larger(S{sub 1}) physics (R{sub 4} is the limiting case) where the double-trace deformations are switched off. In particular, occurrence of the mass gap in the gauge sector and linear confinement due to bions are analytically demonstrated. We find the pattern of the chiral symmetry realization which depends on the structure of the ring operators, a novel class of topological excitations. The deformed chiral theory, unlike the undeformed one, satisfies volume independence down to arbitrarily small volumes (a working Eguchi-Kawai reduction) in the large N limit. This equivalence, may open new perspectives on strong coupling chiral gauge theories on R{sub 4}.
On zero frequency magnetic fluctuations in plasmas
A plasma sustains fluctuations of electromagnetic fields and particle density even in a thermal equilibrium and such fluctuations have a large zero frequency peak. The level of fluctuations in the plasma for a given wavelength and frequency of electromagnetic fields is calculated through the fluctuation-dissipation theorem. The frequency spectrum shows that the energy contained in this peak is complementary to the energy lost'' by the plasma cutoff effect. The level of the zero (or nearly zero) frequency magnetic is computed as {l angle}B{sup 2}{r angle}{sup 0}/ 8{pi} = 1/2{pi}{sup 3}T({omega}{sub p}/c){sup 3}, where T and {omega}{sub p} are the temperature and plasma frequency. The relation between the nonradiative and radiative fluctuations is elucidated. Both a simple collision model and a kinetic theoretic treatment are presented with essentially the same results. The size of the fluctuations is {lambda} {approximately} (c/{omega}{sub p})({eta}/{omega}){sup {1/2}}, where {eta} and {omega} are the collision frequency and the (nearly zero) frequency of magnetic fields oscillations. Perhaps the most dramatic application of the present theory, however, is to the cosmological plasma of early epoch. Implications of these magnetic fields in the early Universe are discussed. Quantum mechanical calculations are also carried out for degenerate plasmas.
On zero frequency magnetic fluctuations in plasmas
A plasma sustains fluctuations of electromagnetic fields and particle density even in a thermal equilibrium and such fluctuations have a large zero frequency peak. The level of fluctuations in the plasma for a given wavelength and frequency of electromagnetic fields is calculated through the fluctuation-dissipation theorem. The frequency spectrum shows that the energy contained in this peak is complementary to the energy ``lost`` by the plasma cutoff effect. The level of the zero (or nearly zero) frequency magnetic is computed as {l_angle}B{sup 2}{r_angle}{sup 0}/ 8{pi} = 1/2{pi}{sup 3}T({omega}{sub p}/c){sup 3}, where T and {omega}{sub p} are the temperature and plasma frequency. The relation between the nonradiative and radiative fluctuations is elucidated. Both a simple collision model and a kinetic theoretic treatment are presented with essentially the same results. The size of the fluctuations is {lambda} {approximately} (c/{omega}{sub p})({eta}/{omega}){sup {1/2}}, where {eta} and {omega} are the collision frequency and the (nearly zero) frequency of magnetic fields oscillations. Perhaps the most dramatic application of the present theory, however, is to the cosmological plasma of early epoch. Implications of these magnetic fields in the early Universe are discussed. Quantum mechanical calculations are also carried out for degenerate plasmas.
On0Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactor
IVery High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (~ 1- mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4% – 10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs.
Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests
Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.
Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Engine Exhaust Aftertreatment and Other Applications
Plasmatron reformers can provide attractive means for conversion of diesel fuel into hydrogen rich gas. The hydrogen rich gas can be used for improved NOx trap technology and other aftertreatment applications.
Onboard Plasmatron Hydrogen Production for Improved Vehicles
A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and …
Once More on the Applicability of Perturbative QCD to Elastic Form Factors
The long-standing problem of the applicability of perturbative QCD to hadronic elastic form factors is discussed. The basic ingredients both of the asymptotic large-Q<sup>2</sup> treatment and of the QCD sum rule approach are analyzed. The main conclusion is that for accessible energies and momentum transfers the soft (nonperturbative) contributions dominate over those due to the hard quark rescattering subprocesses.
Once-through CANDU reactor models for the ORIGEN2 computer code
Reactor physics calculations have led to the development of two CANDU reactor models for the ORIGEN2 computer code. The model CANDUs are based on (1) the existing once-through fuel cycle with feed comprised of natural uranium and (2) a projected slightly enriched (1.2 wt % /sup 235/U) fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models, as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST, are given.
Once Through Decontamination Studies- Interim Report No. 1.
The decontamination of the present Hanford reactors involves a once-through cleaning operation. Considerable interest has also been shown in determining the feasibility of this once-through technique for cleanup of certain portions of the NPR system. This report contains information on a series of tests performed in the 242-B single pass flow facility. Information concerning the following are presented: (1) Efficiency of decontaminating KER Loop 1 and 2 contaminated specimens. (2) Efficiency of decontaminating present reactor pigtails by different methods. (3) Areas that need further study.
Once Through Decontamination Studies- Interim Report No. 2
The decontamination of the present Hanford reactors involves a once-through cleaning operation. Considerable interest has been shown in determining the feasibility of this once-through technique for cleanup of certain portions of the NPR system. This is the second interim report of a series that covers tests performed in the 242-B Single Pass Flow Facility. The first was distributed in January, 1960.
The once-through, helium-cooled cycle for secure, clean, safe, and economical transmutation
No Description Available.
Once-through steam generator (OTSG) materials and water chemistry. [PWR]
Materials and water chemistry research results associated with the development of the Oconee-1 Reactor steam generator are presented. A summary of water chemistry data acquired during preoperational testing and power operation to date is also included. These data confirm the operational practicality of the nuclear once-through concept using volatile water treatment and high purity condensate demineralized feedwater.
Once-through steam-generator sensitivity calculations
A series of TRAC-PF1/MOD2 thermal-hydraulic calculations has been performed to determine the effect of uncertainties in modeling once through steam-generator (OTSG) secondary-side phenomena on the calculated behavior of Babcock and Wilcox power plants. The calculations were performed by varying parameters in correlations for the secondary-side phenomena. The parameters and transients were chosen to show the maximum expected sensitivity of the calculated results to the parameter variations. The parameters were then varied over a range representing the estimated uncertainty in the correlation. In this manner, the sensitivity if the calculated plant behavior to the modeling uncertainties was determined with a reasonable number of calculations. The sensitivity of calculated plant behavior to variations in interfacial heat-transfer in the OTSG secondaries was determined in a series of steam-generator overfill transient calculations. Calculations were performed for a main steam line break (MSLB) transient to quantify the sensitivity to variations in interfacial drag in the secondaries; the interfacial drag was varied in these calculations to indicate the effects of entrainment and de-entrainment processes, for which no specific models exist in the code. In addition to the transient calculations, a series of steady-state calculations was performed to determine the sensitivity of the OTSG primary-to-secondary heat transfer to the assumed fraction of tubes wetted by the auxiliary feedwater (AFW) injection. The plant model used for the sensitivity calculations was qualified by performing a benchmark calculation for a natural circulation test in the TMI-1 plant.
Once-through thorium cycle for BWR's
Problems in application of thorium cycles include greater fissile inventory requirements, the blending of highly enriched uranium or plutonium with thorium, and the necessity to recover and recycle the valuable U-233 produced in order to recover the costs of the initial inventory and enrichment. With these problems in mind, a once-through thorium cycle was developed for Boiling Water Reactors which minimizes the effect of thorium on the fissile inventory, which is initiated with ThO/sub 2/ fuel containing no initial fissile material, and which does not require U-233 recovery and recycle to make the application economically competitive. The design makes advantageous use of the inherent lattice heterogeneity and other characteristics of the BWR lattice to produce U-233 in ThO/sub 2/ without power distribution penalties and to improve reactor performance (thermal and transient margins). Standard BWR fuel assembly hardware was used to make the design backfitable with minimum manufacturing impact. Preliminary conclusions are that the once-through thorium application has potential to both reduce uranium ore requirements and increase BWR operating margins.
Once-through thorium fuel cycle evaluation for TVA's Browns Ferry-3 Boiling Water Reactor
This report documents benchmark evaluations to test thorium lattice predictive methods and neutron cross sections against available data and summarizes specific evaluations of the once-through thorium cycle when applied to the Browns Ferry-3 BWR. It was concluded that appreciable uncertainties in thorium cycle nuclear data cloud the ability to reliably predict the fuel cycle performance and that power reactor irradiations of ThO/sub 2/ rods in BWRs are desirable to resolve uncertainties. Benchmark evaluations indicated that the ENDF/B-IV data used in the evaluations should cause an underprediction of U-233/ThO/sub 2/ fuel reactivity, and, therefore, the results of the preliminary evaluations completed under the program should be conservative.
Once Upon a Dime
Graphic pamphlet about using currency as a method of exchange instead of a barter system, told through the experiences of a small group of people on an island.
Once upon a time (training for emergency situations)
Taking the pretend out of the emergency is discussed in this manual on emergency response training. The following suggestions are made: (1) plan credible emergency situations, (2) select plausible locations, (3) write scenarios, (4) tailor situations to locations, (5) involve other organizations, (6) make injuries look realistic, and (7) let employees take part. (DC)
Oncogene amplification detected by in situ hybridization in radiation induced rat skin tumors. [C-myc:a3]
Oncogene activation may play an important role in radiation induced carcinogenesis. C-myc oncogene amplification was detected by in situ hybridization in radiation-induced rat skin tumors, including squamous and basal cell carcinomas. In situ hybridization was performed with a biotinylated human c-myc third exon probe, visualized with an avidin-biotinylated alkaline phosphate detection system. No c-myc oncogene amplification was detected in normal rat skin at very early times after exposure to ionizing radiation, which is consistent with the view that c-myc amplification is more likely to be related to carcinogenesis than to normal cell proliferation. The incorporation of tritiated thymidine into the DNA of rat skin cells showed that the proliferation of epidermal cells reached a peak on the seventh day after exposure to ionizing radiation and then decreased. No connection between the proliferation of epidermal cell and c-myc oncogene amplification in normal or irradiated rat skin was found. The results indicated that c-myc amplification as measured by in situ hybridization was correlated with the Southern bolt results, but only some of the cancer cells were amplified. The c-myc positive cells were distributed randomly within regions of the tumor and exhibited a more uniform nuclear structure in comparison to the more vacuolated c-myc negative cells. No c-myc signal was detected in unirradiated normal skin or in irradiated skin cells near the tumors. C-myc amplification appears to be cell or cell cycle specific within radiation-induced carcinomas. 28 refs., 3 figs., 3 tabs.
Oncogene mRNA Imaging with Radionuclide-PNA-Peptides
New cancer gene hybridization probes to carry radionuclides were made. Noninvasive technetium-99m gamma imaging of CCND1 cancer gene activity in human breast cancer tumors in mice was demonstrated, followed by noninvasive technetium-99m imaging of MYC cancer gene activity. Noninvasive imaging of CCND1 cancer gene activity in human breast cancer tumors in mice was demonstrated with a positron-emitting copper-64 probe, followed by noninvasive positron imaging of IRS1 cancer gene activity.
Oncogenic Action of Beta, Proton, Alpha and Electron Radiation on the Rat Skin
Rat skin is being utilized as an empirical model for testing dose and time related aspects of the oncogenic action of ionizing radiation, ultraviolet light, and polycyclic aromatic hydrocarbons. Molecular lesions in the skin DNA, including, strand breaks and thymine dimers, are being measured and compared to tumor induction. The induction and repair kinetics of molcular lesions are being compared to split dose repair. Modifiers and radiosensitizers are being utilized to test specific aspects of a chromosome breakage theory of radiation oncogenesis.
(Oncogenic action of ionizing radiation)
An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs.
The oncogenic action of ionizing radiation on rat skin
Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs.
The oncogenic action of ionizing radiation on rat skin
The multistage theory of carcinogenesis specifies that cells progress to cancer through a series of discrete, irreversible genetic alterations, but data on radiation-induced cancer incidence in rat skin suggests that an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to an electron beam (LET=0.34 keV/[mu]), a neon ion beam (LET=45) or an argon ion beam (LET=125). The rats were observed for tumors at least 78 weeks with squamous and basal cell carcinomas observed. The total cancer yield was fitted by the quadratic equation, and the equation parameters were estimated by linear regression for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces stable, carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable linked event pathway at high LET; either pathway may advance the cell by 1 stage. The proliferative response of rat epidermis following exposure to ionizing radiation was quantified by injection of [sup 14]C-thymidine. The return of these cells to S-phase a second time was detected by a second label ([sup 3]H). When the labeled cells were in G1-phase, the dorsal skin was irradiated with X-rays. All labeling indices were determined. The [sup 14]C labeling index was constant and unaffected by the radiation. The proportion of all cells entering S-phase averaged 3.5% at 18 hr and increased after 44, 52 and 75 hr to average levels of 11.8%, 5. 3%, and 6.6% at 0, 10 and 25 Gy respectively. The proportion of S-phase cells labeled with [sup 14]C increased after 42 hr and remained relatively constant …
The oncogenic action of ionizing radiation on rat skin
An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. Progress is described in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) oncogene activation in radiation-induced rat skin cancers; (3) DNA strand breaks in the epidermis as a function of radiation penetration. 59 refs., 4 tabs.
The oncogenic action of ionizing radiation on rat skin. Final progress report, May 1, 1990--April 30, 1992
The multistage theory of carcinogenesis specifies that cells progress to cancer through a series of discrete, irreversible genetic alterations, but data on radiation-induced cancer incidence in rat skin suggests that an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to an electron beam (LET=0.34 keV/{mu}), a neon ion beam (LET=45) or an argon ion beam (LET=125). The rats were observed for tumors at least 78 weeks with squamous and basal cell carcinomas observed. The total cancer yield was fitted by the quadratic equation, and the equation parameters were estimated by linear regression for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces stable, carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable linked event pathway at high LET; either pathway may advance the cell by 1 stage. The proliferative response of rat epidermis following exposure to ionizing radiation was quantified by injection of {sup 14}C-thymidine. The return of these cells to S-phase a second time was detected by a second label ({sup 3}H). When the labeled cells were in G1-phase, the dorsal skin was irradiated with X-rays. All labeling indices were determined. The {sup 14}C labeling index was constant and unaffected by the radiation. The proportion of all cells entering S-phase averaged 3.5% at 18 hr and increased after 44, 52 and 75 hr to average levels of 11.8%, 5. 3%, and 6.6% at 0, 10 and 25 Gy respectively. The proportion of S-phase cells labeled with {sup 14}C increased after 42 hr and remained relatively constant …
Oncology Center
Efforts by the Hollings Cancer Center to earn a designation as a National Cancer Center are outlined.
The Oncor Geodatabase for the Columbia Estuary Ecosystem Restoration Program: Handbook of Data Reduction Procedures, Workbooks, and Exchange Templates
This Handbook of Data Reduction Procedures, Workbooks, and Exchange Templates is designed to support the Oncor geodatabase for the Columbia Estuary Ecosystem Restoration Program (CEERP). The following data categories are covered: water-surface elevation and temperature, sediment accretion rate, photo points, herbaceous wetland vegetation cover, tree plots and site summaries, fish catch and density, fish size, fish diet, fish prey, and Chinook salmon genetic stock identification. The handbook is intended for use by scientists collecting monitoring and research data for the CEERP. The ultimate goal of Oncor is to provide quality, easily accessible, geospatial data for synthesis and evaluation of the collective performance of CEERP ecosystem restoration actions at a program scale.
ONDCP Media Campaign: Contractor's National Evaluation Did Not Find that the Youth Anti-Drug Media Campaign Was Effective in Reducing Youth Drug Use
A letter report issued by the Government Accountability Office with an abstract that begins "Between 1998 and 2004, Congress appropriated over $1.2 billion to the Office of National Drug Control Policy (ONDCP) for the National Youth Anti-Drug Media Campaign. The campaign aimed to prevent the initiation of or curtail the use of drugs among the nation's youth. In 2005, Westat, Inc., completed a multiyear national evaluation of the campaign. GAO has been mandated to review various aspects of the campaign, including Westat's evaluation which is the subject of this report. Applying generally accepted social science research standards, GAO assessed (1) how Westat provided credible support for its findings and Westat's findings about (2) attitudes, beliefs, and behaviors of youth and parents toward drug use and (3) youth self-reported drug use."
One and a half centered expansion for ion-atom collisions
Fast ion-atom collisions in which charge transfer plays a dominant role have been traditionally treated by a two center expansion (TCE): the state wavefunction is approximated by a truncated set of Hilbert states centered on the target and projectile. This method is accurate but expensive in the use of computer time. A new method which allows charge transfer through variational time independent amplitudes, and target excitation and ionization through variational time dependent amplitudes is presented. The method retains the efficiency of a single centered expansion and yet reproduces the conventional TCE results in situations where charge transfer is dominant. Comparison to experiment is made.
A one-and-a-quarter-dimensional transport code for field-reversed configuration studies: A user's guide for CFRX
A one-and-a-quarter-dimensional transport code, which includes radial as well as some two-dimensional effects for field-reversed configurations, is described. The set of transport equations is transformed to a set of new independent and dependent variables and is solved as a coupled initial-boundary value problem. The code simulation includes both the closed and open field regions. The axial effects incorporated include global axial force balance, axial losses in the open field region, and flux surface averaging over the closed field region. Input, output, and structure of the code are described in detail. A typical example of the code results is also given. 20 refs., 21 figs., 7 tabs.
One- and multi-component theories of mixtures
We describe one-component statistical mechanical theories and van der Waal`s effective one-component mixture model. We then show how to apply them to mixtures (containing CO{sub 2}) to extract reliable unlike-pair potential involving CO{sub 2} molecules as well as their dissociation products. A more fundamental approach will require the development of a perturbation or variational theory of mixtures based on a non-additive hard-sphere mixture reference system. Recent progresses made in this direction by means of an integral equation and computer simulations is described.
One and one-half dimensional model of the EBT reactor
A one-dimensional, time-dependent model is described for plasma particle and energy transport and alpha particle transport coupled with magnetic field evolution in a geometry appropriate to EBT. The transport equations used are derived from exact moments of the Boltzmann equation, and the magnetic field is calculated from Faraday's and Ampere's laws. The set of transport equations is closed by incorporating into them transport coefficiencents derived from the appropriate kinetic equation. Also included in the model is a Fokker-Planck calculation of the alpha particle slowing down and resultant plasma heating.
A one- and two-dimensional cross-section sensitivity and uncertainty path of the AARE (Advanced Analysis for Reactor Engineering) modular code system
AARE, a code package to perform Advanced Analysis for Reactor Engineering, is a linked modular system for fission reactor core and shielding, as well as fusion blanket, analysis. Its cross-section sensitivity and uncertainty path presently includes the cross-section processing and reformatting code TRAMIX, cross-section homogenization and library reformatting code MIXIT, the 1-dimensional transport code ONEDANT, the 2-dimensional transport code TRISM, and the 1- and 2- dimensional cross-section sensitivity and uncertainty code SENSIBL. IN the present work, a short description of the whole AARE system is given, followed by a detailed description of the cross-section sensitivity and uncertainty path. 23 refs., 2 figs.
One- and two-dimensional density and temperature measurements of an argon-neon Z-pinch plasma at stagnation
In order to benchmark and improve current 2D radiation magnetohydrodynamic (MHD) models of Z-pinch plasmas, we have performed experiments which characterize the plasma -conditions at stagnation. In the experiments the SATURN pulsed power facility at Sandia National Laboratory was used to create an imploding -Ar-Ne plasma. An absolutely calibrated, high resolution space- and time- resolving Johann crystal spectrometer was used to infer the electron temperature Te from the slope of the hydrogenlike Ne free-bound continuum, and the ion density ni from the Stark broadening of the Ar heliunlike Rydberg series. 2D electron temperature profiles of the plasma are obtained from a set of imaging crystals also focused on the Ne free-bound continuum. We shot two types of gas nozzles in the experiment, annular and uniform fill which varies the amount of mass in the plasma. 2D local thermodynamic equilibrium (LTE) and non-LTE MM models predict a radiating region denser and cooler than measured.
One- and two-dimensional heating analyses of fusion synfuel blankets
Comparisons between one- and two-dimensional neutronics and heating analyses were performed on a Brookhaven designed fusion reactor blanket featuring synthetic fuel production. In this two temperature region blanket design, the structural shell is stainless steel. The interior of the module is a packed ball of high temperature ceramic material. The low temperature shell and the high temperature ceramic interior are separately cooled. Process steam (approx. 1500/sup 0/C) is then produced in the ceramic core for the producion of H/sub 2/ and H/sub 2/-based synthetic fuels by a high temperature electrolysis (HTE) process.
One- and two-dimensional infrared spectroscopic studies of solution-phase homogeneous catalysis and spin-forbidden reactions
Understanding chemical reactions requires the knowledge of the elementary steps of breaking and making bonds, and often a variety of experimental techniques are needed to achieve this goal. The initial steps occur on the femto- through picosecond time-scales, requiring the use of ultrafast spectroscopic methods, while the rate-limiting steps often occur more slowly, requiring alternative techniques. Ultrafast one and two-dimensional infrared and step-scan FTIR spectroscopies are used to investigate the photochemical reactions of four organometallic complexes. The analysis leads to a detailed understanding of mechanisms that are general in nature and may be applicable to a variety of reactions.
One- and two-dimensional least-squares smoothing and edge-sharpening method for image processing
A rapid method is developed for two-dimensional smoothing and edge- sharpening by the least-squares fitting of a function to a limited area of the data. This convolution or matrix weighting is applied at each point of the data set to yield a smoothed or a sharpened image. Weighting matrices for 3 x 3, 5 x 5, and 7 x 7 point fitting areas are provided for polynomial function fits of all degrees up to the highest degree determinable. For the 7 x 7 point fitting area weights for fitting functions of up to the quartic in both dimensions are supplied. Application of the 5 x 5 point quadratic fit smoothing to a nuclear medicine image is shown as an example. (auth)
One and Two Dimensional Radiation Analysis of the Compact Ignition Tokamak
This report consists of a group of slides describing the compact ignition tokamak (CIT). Several drawings present the layout of the facility. Concerns about radiation effects are mentioned. (JDH)
One- and two-dimensional radiation analysis of the Compact Ignition Tokamak
The Compact Ignition Tokamak (CIT) is being proposed as the next major fusion experiment to follow the operations of the Tokamak Fusion Test Reactor (TFTR). CIT is a compact deuterium-tritium-burning tokamak device that is designed to achieve ignition. The high neutron wall loadings, 7 to 9 MW/m/sup 2/, associated with the operation of this device require that neutronics-related issues be considered in the overall system design. Radiation shielding is required for the protection of both device components and personnel. A close-in igloo shield, 1.8 m nominal thickness, has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and to limit the total activation of the test cell components. This paper discusses the major neutronics issues related to the design of the Compact Ignition Experiment, describes the methodologies used to quantify these concerns, and presents the results of radiation transport and activation scoping studies.
One-and-Two-Dimensional Simulations of Liner Performance at Atlas Parameters
The authors report results of one-and-two-dimensional MHD simulations of an imploding heavy liner in Z-pinch geometry. The driving current has a pulse shape and peak current characteristic of the Atlas pulsed-power facility being constructed at Los Alamos National Laboratory. One-dimensional simulations of heavy composite liners driven by 30 MA currents can achieve velocities on the order of 14 km/sec. Used to impact a tungsten target, the liner produces shock pressures of approximately fourteen megabars. The first 2-D simulations of imploding liners driven at Atlas current parameters are also described. These simulations have focused on the interaction of the liner with the glide planes, and the effect of realistic surface perturbations on the dynamics of the pinch. It is found that the former interaction does not seriously affect the inner liner surface. Results from the second problem indicate that a surface perturbation having amplitude as small as 0.2 {micro}m can have a significant effect on the implosion dynamics.
One- and two-dimensional Stirling machine simulation using experimentally generated reversing flow turbuulence models
The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year`s funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge.
One- and Two-Dimensional Wave Fronts in Diffusive Systems With Discrete Sets of Nonlinear Sources
The authors study the dynamics of on- and two-dimensional diffusion systems with sets of discrete nonlinear sources. They show that wave fronts propagating in such systems are pinned if the diffusion constant is below a critical value which corresponds to a saddle-node bifurcation of the dynamics. In two dimensions they find that the dissipation is enhanced and moving plain and circular fronts are stable with respect to any perturbations.
One and two electron integrals over Cartesian Gaussian functions
A formalism is developed which allows overlap, kinetic energy, potential energy and electron repulsion integrals over cartesian Gaussian functions to be expressed in a very compact form involving easily computed auxiliary functions. Similar formulas involving the same auxiliary functions are given for the common charge moments, electric-field operators, and spin-interaction operators. Recursion relations are given for the auxiliary functions which make possible the use of Gaussian functions of arbitrarily large angular momentum. An algorithm is described for the computation of electron repulsion integrals.
ONE AND TWO ELECTRON TRANSFER REACTIONS. Final Progress Report, March 1, 1971--February 28, 1972.
No Description Available.
One and Two Electron Transfer Reactions. Progress Report, March 1, 1970-- February 28, 1971.
No Description Available.
Back to Top of Screen