UNT Libraries Government Documents Department - 279,445 Matching Results

Search Results

1/2 Sintering of Mullite-Containing Materials: I. Effect of Composition

Description: Sintering behavior of mullite-containing powders was studied over a range of chemical compositions (Al{sub 2}O{sub 3}/SiO{sub 2} ratio). Densification measurements were made for both liquid phase-containing and solid state systems. Small amounts of liquid phase were observed to have a significant effect on densification rate. A linear relationship was obtained between the percent of theoretical density and the logarithm of time for compositions in the range 73-75 wt% Al{sub 2}O{sub 3}. Currently available models for intermediate stage sintering kinetics were considered to be inadequate for these systems. Grain boundary transport 0r diffusion appeared to be the primary mechanism of densification.
Date: December 1, 1981
Creator: Sacks, Michael D. & Pask, Joseph A.

1.3 GHz superconducting RF cavity program at Fermilab

Description: At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.
Date: March 1, 2011
Creator: Ginsburg, C. M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L. et al.

1,3-Propanediol Made From Fermentation-Derived Malonic Acid: Office of Industrial Technologies (OIT) Agriculture Project Fact Sheet

Description: 1,3-Propanediol is one of two ingredients used in producing polytrimethylene terephthalate (PTT), a polymer which can be used in polyester and nylon applications. Researchers are developing a process to ferment biomass feedstock to malonic acid using filamentous fungi and then catalytically convert malonic acid to 1,3-propanediol.
Date: September 12, 2001
Creator: Carde, T.

A 1.5 GeV compact light source with superconducting bending magnets

Description: This paper describes the design of a compact electron synchrotron light source for producing X-rays for medical imaging, protein crystallography, nano-machining and other uses up to 35 keV. The source will provide synchrotron light from six 6.9 tesla superconducting 60{degree} bending magnet stations. In addition the ring, contains conventional quadrupoles and sextupoles. The light source has a circumference of 26 meters, which permits it to be located in a variety of industrial and medical facilities.
Date: May 1995
Creator: Garren, A. A.; Cline, D. B.; Kolonko, J. J.; Green, M. A.; Johnson, D. E.; Leung, E. M. et al.

1.06 μm 150 psec laser damage study of diamond turned, diamond turned/ polished and polished metal mirrors

Description: Using a well characterized 1.06 μm 150 ps glass laser pulse the damage characteristics for diamond turned, diamond turned/ polished, and polished copper and silver mirrors less than 5 cm diameter were studied. Although most samples were tested with a normal angle of incidence, some were tested at 45$sup 0$ with different linear polarization showing an increase in damage threshold for S polarization. Different damage mechanisms observed will be discussed. Laser damage is related to residual surface influences of the fabrication process. First attempts to polish diamond turned surfaces resulted in a significant decrease in laser damage threshold. The importance of including the heat of fusion in the one dimensional heat analysis of the theoretical damage threshold and how close the samples came to the theoretical damage threshold is discussed. (auth)
Date: July 24, 1975
Creator: Saito, T. T.; Milam, D.; Baker, P. & Murphy, G.

1.8.2.1.2 Site system engineering implementation Fiscal Year 1998 multi-year work plan

Description: Manage the Site Systems Engineering process to provide a traceable, integrated, requirements-driven, and technically defensible baseline., Through the Site Integration Group, Systems Engineering ensures integration of technical activities across all site projects. Systems Engineering`s primary interfaces are with the Project Direction Office and with the projects, as well as with the Planning organization.
Date: October 3, 1997
Creator: Ferguson, J. E.

1.8.3 Site system engineering FY 1997 program plan

Description: The FY 1997 Multi-Year Work Plan (MYWP) technical baseline describes the functions to be accomplished and the technical standards that govern the work. The following information is provided in this FY 1997 MYWP: technical baseline, work breakdown structure, schedule baseline, cost baseline, and execution year.
Date: September 13, 1996
Creator: Grygiel, M. L.

A 1.8 Mev K+ injector for the high current beam transport experiment fusion

Description: For the High Current Beam Transport Experiment (HCX) at LBNL, an injector is required to deliver up to 1.8 MV of 0.6 A K{sup +} beam with an emittance of {approx}1 p-mm-mrad. We have successfully operated a 10-cm diameter surface ionization source together with an electrostatic quadrupole (ESQ) accelerator to meet these requirements. The pulse length is {approx}4 {micro}s, firing at once every 10-15 seconds. By optimizing the extraction diode and the ESQ voltages, we have obtained an output beam with good current density uniformity, except for a small increase near the beam edge. Characterization of the beam emerging from the injector included measurements of the intensity profile, beam imaging, and transverse phase space. These data along with comparison to computer simulations provide the knowledge base for designing and understanding future HCX experiments.
Date: May 20, 2002
Creator: Kwan, J.W.; Bieniosek,F.M.; Henestroza, E.; Prost, L. & Seidl, P.

1.5D Quasilinear Model for Alpha Particle-TAE Interaction in ARIES ACT-I

Description: We study the TAE interaction with alpha particle fusion products in ARIES ACT-I using the 1.5D quasilinear model. 1.5D uses linear analytic expressions for growth and damping rates of TAE modes evaluated using TRANSP pro les to calculates the relaxation of pressure pro les. NOVA- K simulations are conducted to validate the analytic dependancies of the rates, and to normalize their absolute value. The low dimensionality of the model permits calculating loss diagrams in large parameter spaces.
Date: January 30, 2013
Creator: Ghantous, K.; Gorelenkov, N. N.; Kessel, C. & Poli, F.

1/6TH SCALE STRIP EFFLUENT FEED TANK-MIXING RESULTS USING MCU SOLVENT

Description: The purpose of this task was to determine if mixing was an issue for the entrainment and dispersion of the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) solvent in the Defense Waste Processing Facility (DWPF) Strip Effluent Feed Tank (SEFT). The MCU strip effluent stream containing the Cs removed during salt processing will be transferred to the DWPF for immobilization in HLW glass. In lab-scale DWPF chemical process cell testing, mixing of the solvent in the dilute nitric acid solution proved problematic, and the Savannah River National Laboratory (SRNL) was requested to perform scaled SEFT mixing tests to evaluate whether the problem was symptomatic of the lab-scale set-up or of the solvent. The solvent levels tested were 228 and 235 ppm, which represented levels near the estimated DWPF solvent limit of 239 ppm in 0.001M HNO{sub 3} solution. The 239 ppm limit was calculated by Norato in X-CLC-S-00141. The general approach for the mixing investigation was to: (1) Investigate the use of fluorescent dyes to aid in observing the mixing behavior. Evaluate and compare the physical properties of the fluorescent dyed MCU solvents to the baseline Oak Ridge CSSX solvent. Based on the data, use the dyed MCU solvent that best approximates the physical properties. (2) Use approximately a 1/6th linear scale of the SEFT to replicate the internal configuration for DWPF mixing. (3) Determine agitator speed(s) for scaled testing based on the DWPF SEFT mixing speed. (4) Perform mixing tests using the 1/6th SEFT and determine any mixing issues (entrainment/dispersion, accumulation, adhesion) through visual observations and by pulling samples to assess uniformity. The mixing tests used MCU solvent fabricated at SRNL blended with Risk Reactor DFSB-K43 fluorescent dye. This dyed SRNL MCU solvent had equivalent physical properties important to mixing as compared to the Oak Ridge baseline solvent, ...
Date: February 1, 2006
Creator: Hansen, E.

1-D Equilibrium Discrete Diffusion Monte Carlo

Description: We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.
Date: August 2000
Creator: Evans, T. M.; Urbatsch, T. J. & Lichtenstein, H.

1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

Description: One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of state (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 to 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.
Date: March 19, 2010
Creator: Zylstra, A; Barnard, J J & More, R M

1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

Description: One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of tate (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 o 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.
Date: December 23, 2009
Creator: Zylstra, A. B.; Barnard, J. J. & More, R. M.

1 GeV CW nonscaling FFAG for ADS, and magnet parameters

Description: Multi-MW proton driver capability remains a challenging, critical technology for many core HEP programs, particularly the neutrino ones such as the Muon Collider and Neutrino factory, and for high-profile energy applications such as Accelerator Driven Subcritical Reactors (ADS) and Accelerator Transmutation of Waste for nuclear power and waste management. Work is focused almost exclusively on an SRF linac, as, to date, no re-circulating accelerator can attain the 10-20 MW capability necessary for the nuclear applications. Recently, the concept of isochronous orbits has been explored and developed for nonscaling FFAGs using powerful new methodologies in FFAG accelerator design. Work is progressing on a stable, high-intensity, 1 GeV isochronous FFAG. Initial specifications of novel magnets with the nonlinear radial fields required to support isochronous operation are also reported here.
Date: May 20, 2012
Creator: Johnstone, C.; Meot, F.; Snopok, P. & Weng, W.

1-GeV Linac Upgrade Study at Fermilab

Description: A linac injector for a new proton source complex at Fermilab is assumed to have a kinetic energy of 1 GeV. This linac would be sized to accelerate 100 mA of H{sup -} beam in a 200 microsecond pulse at a 15 Hz repetition rate. This would be adequate to produce {approximately}10{sup 14} protons per pulse allowing for future improvements of the new proton source complex. An alternate proposal is to add 600 MeV of side coupled cavity linac at 805 MHz to the existing 400 MeV Linac. This addition may either be in a new location or use the present Booster tunnel. A discussion of these possibilities will be given.
Date: September 1998
Creator: Popovic, M.; Moretti, A.; Noble, R. & Schmidt, C. W.