UNT Libraries Government Documents Department - 65,519 Matching Results

Search Results

A 1-kW power demonstration from the advanced free electron laser

Description: This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The main objective of this project was to engineer and procure an electron beamline compatible with the operation of a 1-kW free-electron laser (FEL). Another major task is the physics design of the electron beam line from the end of the wiggler to the electron beam dump. This task is especially difficult because electron beam is expected to have 20 kW of average power and to simultaneously have a 25% energy spread. The project goals were accomplished. The high-power electron design was completed. All of the hardware necessary for high-power operation was designed and procured.
Date: August 1997
Creator: Sheffield, R. L.; Conner, C. A. & Fortgang, C. M.

1/m<sub>c</sub> Terms in lambda<sup>+</sup><sub>c</sub> Semileptonic Decays

Description: We use the heavy quark effective theory to investigate the form factors that describe the semileptonic decays lambda<sup>+</sup><sub>c</sub> -> lambda e<sup>+</sup> nu, to order 1/m<sub>c</sub>. We find that a total of four form factors are needed to this order, in contrast with two form factors to leading order, and six form factors in the most general case. We point out some relationships that arise among the general form factors.
Date: February 1, 1992
Creator: Roberts, Winston

O(1/M{sup 3}) effects for heavy-light mesons in lattice NRQCD

Description: The masses of spin-singlet and spin-triplet S-wave mesons containing a single heavy quark are computed in the quenched approximation. The light quark action and gauge field action are both classically-improved and tadpole-improved, and the couplings to the heavy quark are organized by the 1/M expansion of tadpole-improved NRQCD. At each of two lattice spacings, near 0.22fm and 0.26fm, meson masses are obtained for heavy quarks spanning the region between charmed and bottom mesons. Results up to O(1/M), O(1/M{sup 2})and O(1/M{sup 3}) are displayed separately, so that the convergence of the heavy quark expansion can be discussed. Also, the effect of each term in the O(1/M{sup 3}) contribution is computed individually. For bottom mesons the 1/M-expansion appears to be satisfactory, but the situation for charmed mesons is less clear.
Date: March 1998
Creator: Lewis, Randy & Woloshyn, R. M.

1: Mass asymmetric fission barriers for {sup 98}Mo; 2: Synthesis and characterization of actinide-specific chelating agents

Description: Excitation functions have been measured for complex fragment emission from the compound nucleus {sup 98}Mo, produced by the reaction of {sup 86}Kr with {sup 12}C. Mass asymmetric fission barriers have been obtained by fitting the excitation functions with a transition state formalism. The extracted barriers are {approximately} 5.7 MeV higher, on average, than the calculations of the Rotating Finite Range Model (RFRM). These data clearly show an isospin dependence of the conditional barriers when compared with the extracted barriers from {sup 90}Mo and {sup 94}Mo. Eleven different liquid/liquid extractants were synthesized based upon the chelating moieties 3,2-HOPO and 3,4-HOPO; additionally, two liquid/liquid extractants based upon the 1,2-HOPO chelating moiety were obtained for extraction studies. The Pu(IV) extractions, quite surprisingly, yielded results that were very different from the Fe(III) extractions. The first trend remained the same: the 1,2-HOPOs were the best extractants, followed closely by the 3,2-HOPOs, followed by the 3,4-HOPOs; but in these Pu(IV) extractions the 3,4-HOPOs performed much better than in the Fe(III) extractions. 129 refs.
Date: August 1, 1996
Creator: Veeck, A. C.

A-01 metals in stormwater runoff evaluation

Description: As a part of the A-01 investigation required by the NPDES permit, an investigation was performed to ascertain the concentrations of metals specifically copper (Cu), lead (Pb), and zinc (Zn) in stormwater being discharged through the outfall. This information would indicate whether all water being discharged would have to be treated or if only a portion of the discharged stormwater would have to be treated. A study was designed to accomplish this. The first goal was to determine if the metal concentrations increased, decreased, or remained the same as flow increased during a rain event. The second goal was to determine if the concentrations in the storm water were due to dissolved. The third goal was to obtain background data to ascertain if effluent credits could be gained due to naturally occurring metals.Samples from this study were analyzed and indicate that the copper and lead values increase as the flow increases while the zinc values remain essentially the same regardless of the flow rate. Analyses of samples for total metals, dissolved metals, TSS, and metals in solids was complicated because in all cases metals contamination was found in the filters themselves. Some conclusions can be derived if this problem is taken into account when analyzing the data. Copper concentrations in the total and dissolved fractions as well as the TSS concentrations followed the hydrograph at this outfall but the copper in solids concentration appeared to peak in the first flush and decline to nondetectable rapidly over the course of the storm event. Lead was present in the total analysis but not present in the dissolved fraction or the solids fraction of the samples. The data for zinc was interesting in that the dissolved fractions were higher than the total fraction in three out of four samples. This is probably due ...
Date: November 6, 1997
Creator: Eldridge, L. L.

1 MeV electron irradiation of solid Xe nanoclusters in Al : an in-situ HRTEM study.

Description: Thin film samples of a simple embedded nanocluster system consisting of solid Xe precipitates in Al have been subjected to 1 MeV electron irradiation in a high-voltage electron microscope. High-resolution images have been recorded on videotape in order to monitor the changes to the system resulting from the passage of electrons through the film. Inspection of the video recordings (in some cases frame-by-frame) reveals that complex, rapid processes occur under the electron beam. These include, movement of small clusters, coalescence of neighboring clusters, shape changes, the apparent melting and resolidification of the Xe, and the creation and annealing of extended defects within the Xe lattice. A tentative interpretation of some of the observations is presented in terms of the electron-induced displacement processes at the surface of the clusters.
Date: December 5, 1997
Creator: Donnelly, S. E.; Furuya, K.; Song, M.; Birtcher, R. C. & Allen, C. W.

1 nA beam position monitoring system

Description: A system has been developed at Jefferson Lab for measuring transverse position of very low current beams delivered to the Experimental Hall B of the Continuous Electron Beam Accelerator Facility (CEBAF). At the heart of the system is a position sensitive cavity operating at 1497 MHz. The cavity utilizes a unique design which achieves a high sensitivity to beam position at a relatively low cavity Q. The cavity output RF signal is processed using a down-converter and a commercial lock-in amplifier operating at 100 kHz. The system interfaces with a VME based EPICS control system using the IEEE, 488 bus. The main features of the system are simple and robust design, and wide dynamic range capable of handling beam currents from 1 nA to 1000 nA with an expected resolution better than 100 {mu}m. This paper outlines the design of the system.
Date: June 1, 1997
Creator: Ursic, R.; Flood, R. & Piller, C.

A 1- to 5-MW, RCS-based, short-pulse spallation neutron source

Description: Two accelerator configurations, the linac/compressor ring scheme and the linac/RCS scheme, are commonly used to provide the proton beam power for a short-pulse spallation neutron source. In one configuration, a full-power linac provides the beam power and a compressor ring shortens the pulse length from 1-ms down to 1 {micro}s. In the other, rapid cycling synchrotrons (RCSs) provide the beam power and also shorten the pulse length. A feasibility study of a staged approach to a 5-MW proton source utilizing RCS technology, allowing intermediate operation at 1 MW, was performed at ANL and is presented in this paper. This study is complementary to a study in progress at ORNL based on a linac and an accumulator ring. The 1-MW facility consists of a 400-MeV injector linac that delivers 0.5-mA time-averaged current, a synchrotron that accelerates the beam to 2 GeV at a 30-Hz rate, and two neutron-generating target stations. In the second phase, the 2-GeV beam is accelerated to 10 GeV by a larger RCS, increasing the facility beam power to 5 MW.
Date: June 1997
Creator: Cho, Y.; Chae, Y.-C. & Crosbie, E.

1-watt composite-slab Er:YAG laser. Revision 1

Description: A diode-side-pumped discrete-optic Er{sup 3+} :YAG laser employs pump-light coupling through a sapphire plate diffusion-bonded to the laser slab, removing heat directly at the pump face of the slab instead of requiring conduction through to its far side. This lowers the temperature in the gain region and gives reduced thermal lensing, which produces exceptional beam quality (M{sup 2} {approx} 1.3) at output powers {approx} 0.3 Watt. Powers above 1 Watt have been demonstrated with peak slope efficiencies {approx}20%. The novel architecture is also applicable to other side-pumped lasers.
Date: February 13, 1997
Creator: Page, R. H.; Bartels, R. A.; Beach, R. J.; Sutton, S. B.; Furu, L. H. & LaSala, J. E.

2-1/2-D electromagnetic modeling of nodular defects in high-power multilayer optical coatings

Description: Advances in the design and production of high damage threshold optical coatings for use in mirrors and polarizers have been driven by the design requirements of high-power laser systems such as the proposed 1.8-MJ National Ignition Facility (NIF) and the prototype 12- kJ Beamlet laser system. The present design of the NIF will include 192 polarizers and more than 1100 mirrors. Currently, the material system of choice for high-power multilayer optical coatings with high damage threshold applications near 1.06 {mu}m are e-beam deposited HfO{sub 2}/Si0{sub 2} coatings. However, the optical performance and laser damage thresholds of these coatings are limited by micron-scale defects and insufficient control over layer thickness. In this report, we will discuss the results of our 2-1/2-D finite-element time- domain (FDTD) EM modeling effort for rotationally-symmetric nodular defects in multilayer dielectric HR coatings. We have added a new diagnostic to the 2-1/2-D FDTD EM code, AMOS, that enables us to calculate the peak steady-state electric fields throughout a 2-D planar region containing a 2-D r-z cross-section of the axisymmetric nodular defect and surrounding multilayer dielectric stack. We have also generated a series of design curves to identify the range of loss tangents for Si0{sub 2} and HfO{sub 2} consistent with the experimentally determined power loss of the HR coatings. In addition, we have developed several methods to provide coupling between the EM results and the thermal-mechanical simulation effort.
Date: July 1996
Creator: Molau, N. E.; Brand, H. R.; Kozlowski, M. R. & Shang, C. C.

(02.2) Scoping experiments; (02.3) long-term corrosion testing and properties evaluation of candidate waste package basket material

Description: The work described in this activity plan addresses Information Need 2.7.3 of the Yucca Mountain Site Characterization Plan (l), which reads Determination that the design criteria in lOCFR60.130 through 60.133 and any appropriate additional design objectives pertaining to criticality control have been met. This work falls under section WBS 2 (Basket Materials) of WBS (Waste Package Materials) in the Work Breakdown Structure of the Yucca Mountain Site Characterization Project.
Date: December 20, 1996
Creator: VanKonynenburg, R. A.

The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

Description: Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.
Date: February 1, 1996
Creator: Zhang, Rong-Guang; Westbrook, M.L.; Maulik, P.R.; Reed, R.A.; Shipley, G.; Westbrook, E.M. et al.

A 2.14 ms candidate optical pulsar in SN1987A: Ten years after

Description: We have monitored Supernova 1987A in optical/near-infrared bands from a few weeks following its birth until the present time in order to search for a pulsar remnant. We have found an apparent pattern of emission near the frequency of 467.5 Hz - a 2.14 ms pulsar candidate, first detected in data taken on the remnant at the Las Campanas Observatory (LCO) 2.5-m Dupont telescope during 14-16 Feb. 1992 UT. We detected further signals near the 2.14 ms period on numerous occasions over the next four years in data taken with a variety of telescopes, data systems and detectors, at a number of ground- and space-based observatories. The sequence of detections of this signal from Feb. `92 through August `93, prior to its apparent subsequent fading, is highly improbable (< 10{sup -10} for any noise source). We also find evidence for modulation of the 2.14 ms period with a {approx}1,000 s period which, when taken with the high spindown of the source (2-3 x 10{sup -10} Hz/s), is consistent with precession and spindown via gravitational radiation of a neutron star with a non- axisymmetric oblateness of {approx}10{sup -6}, and an implied gravitational luminosity exceeding that of the Crab Nebula pulsar by an order of magnitude.
Date: September 1, 1997
Creator: Middleditch, J.; Kristian, J.A.; Kunkel, W.E.; Hill, K.M. & Watson, R.D.

2-D electric fields and drifts near the magnetic separatrix in divertor tokamaks

Description: A 2-D calculation is presented for the transport of plasma in the edge region of a divertor tokamak solving continuity, momentum, and energy balance fluid equations. The model uses anomalous radial diffusion, including perpendicular ion momentum, and classical cross-field drifts transport. Parallel and perpendicular currents yield a self-consistent electrostatic potential on both sides of the magnetic separatrix. Outside the separatrix, the simulation extends to material divertor plates where the incident plasma is recycled as neutral gas and where the plate sheath and parallel currents dominate the potential structure. Inside the separatrix, various radial current terms - from viscosity, charge-exchange and poloidal damping, inertia, and {triangledown}B - contribute to the determining the potential. The model rigorously enforces cancellation of gyro-viscous and magnetization terms from the transport equations. The results emphasize the importance of E x B particle flow under the X-point which depends on the sign of the toroidal magnetic field. Radial electric field (E{sub y}) profiles at the outer midplane are small with weak shear when high L-mode diffusion coefficients are used and are large with strong shear when smaller H-mode diffusion coefficients are used. The magnitude and shear of the electric field (E{sub y}) is larger both when the core toroidal rotation is co-moving with the inductive plasma current and when the ion {triangledown}B-drift is towards the single-null X-point.
Date: November 15, 1998
Creator: Mattor, N.; Porter, G. D.; Rognlien, T. D. & Ryutov, D. D.

2-D Finite Element Cable and Box IEMP Analysis

Description: A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.
Date: December 17, 1998
Creator: Scivner, G.J. & Turner, C.D.

2-D image segmentation using minimum spanning trees

Description: This paper presents a new algorithm for partitioning a gray-level image into connected homogeneous regions. The novelty of this algorithm lies in the fact that by constructing a minimum spanning tree representation of a gray-level image, it reduces a region partitioning problem to a minimum spanning tree partitioning problem, and hence reduces the computational complexity of the region partitioning problem. The tree-partitioning algorithm, in essence, partitions a minimum spanning tree into subtrees, representing different homogeneous regions, by minimizing the sum of variations of gray levels over all subtrees under the constraints that each subtree should have at least a specified number of nodes, and two adjacent subtrees should have significantly different average gray-levels. Two (faster) heuristic implementations are also given for large-scale region partitioning problems. Test results have shown that the segmentation results are satisfactory and insensitive to noise.
Date: September 1995
Creator: Xu, Y. & Uberbacher, E. C.

2-D linear motion system. Innovative technology summary report

Description: The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However, for areas over approximately ...
Date: November 1, 1998

A 2-D Self-Consistent DSMC Model for Chemically Reacting Low Pressure Plasma Reactors

Description: This paper will focus on the methodology of using a 2D plasma Direct Simulation Monte Carlo technique to simulate the species transport in an inductively coupled, low pressure, chemically reacting plasma system. The pressure in these systems is typically less than 20 mtorr with plasma densities of approximately 10{sup 17} {number_sign}/m{sup 3} and an ionization level of only 0.1%. This low ionization level tightly couples the neutral, ion, and electron chemistries and interactions in a system where the flow is subsonic. We present our strategy and compare simulation results to experimental data for Cl{sub 2} in a Gaseous Electronics Conference (GEC) reference cell modified with an inductive coil.
Date: June 17, 1999
Creator: Bartel, Timothy J.; Economou, Demetre & Johannes, Justine E.

A 2-GHz Rectangular Corrugated Horn

Description: We have designed, constructed and tested a large, rectangular horn antenna with a center frequency of 2.0 GHz, corrugated on the E-plane walls, made out of aluminum sheet. A new technique has been developed to solder thin aluminum strips onto the back plane to form the corrugations. The radiation beam pattern shows half-power beamwidths of 12{sup 0} and 14{sup 0} in the H and E planes respectively, and side lobe response below -40 dB at angles greater than 50{sup 0} from horn axis. The measured return loss is less than -20 dB (VSWR &lt; 1.22) between 1.7 and 2.3 GHz; insertion loss is less than 0.15 dB.
Date: October 1, 1991
Creator: Bersanelli, M.; Bensadoun, M.; De Amici, Giovanni; Limon, M.; Smoot, George F.; Tanaka, S. et al.

N = 2 string amplitudes

Description: In physics, solvable models have played very important roles. Understanding a simple model in detail teaches us a lot about more complicated models in generic situations. Five years ago, C. Vafa and I found that the closed N = 2 string theory, that is a string theory with the N = 2 local supersymmetry on the worldsheet, is classically equivalent to the self-dual Einstein gravity in four spacetime dimensions. Thus this string theory is solvable at the classical level. More recently, we have examined the N = 2 string partition function for spacial compactifications, and computed it to all order in the string perturbation expansion. The fact that such computation is possible at all suggests that the N = 2 string theory is solvable even quantum mechanically.
Date: August 1, 1995
Creator: Ooguri, H.

2 {times} 2 TeV {mu}{sup +}{mu}{sup {minus}} collider: Lattice and accelerator-detector interface study

Description: The design for a high-luminosity {mu}{sup +}{mu}{sup {minus}} superconducting storage ring is presented based on first-pass calculations. Special attention is paid to two Iowa interaction regions (IR) whose optics are literally interlaced with the collider detectors. Various sources of backgrounds in IR are explored via realistic Monte Carlo simulations. An improved design of the collider lattice in the neighborhood of the interaction points (EP) is determined by the need to reduce significantly background levels in the detectors.
Date: May 1, 1995
Creator: Gelfand, N.M. & Mokhov, N.V.

A 2 to 4 nm high power FEL on the SLAC linac

Description: We report the results of preliminary studies of a 2 to 4 nm SASE FEL, using a photoinjector to produce the electron beam, and the SLAC linac to accelerate it to an energy up to 10 GeV. Longitudinal bunch compression is used to increases ten fold the peak current to 2.5 kA, while reducing the bunch length to the subpicosecond range. The saturated output power is in the multi-gigawatt range, producing about 10{sup 14} coherent photons within a bandwidth of about 0.2% rms, in a pulse of several millijoules. At 120Hz repetition rate the average power is about 1 W. The system is optimized for x-ray microscopy in the water window around 2 to 4 nm, and will permit imaging a biological sample in a single subpicosecond pulse.
Date: September 1, 1992
Creator: Pellegrini, C.; Rosenzweig, J.; Nuhn, H. D.; Pianetta, P.; Tatchyn, R.; Winick, H. et al.

2 x 2 TeV mu(superscript +) mu (superscript) collider

Description: The scenarios for high-luminosity 2 x 2 TeV and 250 x 250 GeV {mu}{sup +}{mu}{sup -} colliders are presented. Having a high physics potential, such a machine has specific physics and technical advantages and disadvantages when compared with an e{sup +}e{sup -} collider. Parameters for the candidate designs and the basic components - proton source, pion production and decay channel, cooling, acceleration and collider storage ring - are considered. Attention is paid to the areas mostly affecting the collider performance: targetry, energy spread, superconducting magnet survival, detector backgrounds, polarization, environmental issues. 13 refs., 9 figs., 4 tabs.
Date: October 1, 1996
Creator: Mokhov, N.V. & Noble, R.J.