UNT Libraries Government Documents Department - Browse


Altitude-chamber performance of British Rolls-Royce Nene II engine III : 18.00-inch-diameter jet nozzle

Description: An altitude-chamber investigation of British Rolls-Royce Nene II turbojet engine was conducted over range of altitudes from sea level to 65,000 feet and ram pressure ratios from 1.10 to 3.50, using an 18.00-inch-diameter jet nozzle. The 18.00-inch-diameter jet nozzle gave slightly lower values of net-thrust specific fuel consumption than either the 18.41- or the standard 18.75-inch-diameter jet nozzles at high flight speeds. At low flight speeds, the 18.41-inch-diameter jet nozzle gave the lowest value of net-thrust specific fuel consumption.
Date: July 10, 1950
Creator: Grey, Ralph E; Brightwell, Virginia L; Barson, Zelmar & NACA

An Anaylsis of Control Requirements and Control Parameters for Direct-Coupled Turbojet Engines

Description: Requirements of an automatic engine control, as affected by engine characteristics, have been analyzed for a direct-coupled turbojet engine. Control parameters for various conditions of engine operation are discussed. A hypothetical engine control is presented to illustrate the use of these parameters. An adjustable speed governor was found to offer a desirable method of over-all engine control. The selection of a minimum value of fuel flow was found to offer a means of preventing unstable burner operation during steady-state operation. Until satisfactory high-temperature-measuring devices are developed, air-fuel ratio is considered to be a satisfactory acceleration-control parameter for the attainment of the maximum acceleration rates consistent with safe turbine temperatures. No danger of unstable burner operation exists during acceleration if a temperature-limiting acceleration control is assumed to be effective. Deceleration was found to be accompanied by the possibility of burner blow-out even if a minimum fuel-flow control that prevents burner blow-out during steady-state operation is assumed to be effective. Burner blow-out during deceleration may be eliminated by varying the value of minimum fuel flow as a function of compressor-discharge pressure, but in no case should the fuel flow be allowed to fall below the value required for steady-state burner operation.
Date: January 1, 1947
Creator: Novik, David & Otto, Edward W.

An Analysis of the Full-Floating Journal Bearing

Description: An analysis of the operating characteristics of a full-floating bearing - a bearing in which a floating sleeve is located between the journal and bearing surfaces - is presented together with charts - from which the performance of such bearings may be predicted. Examples are presented to illustrate the use of these charts and a limited number of experiments conducted upon a glass full-floating bearing to verify some results of the analysis are reported. The floating sleeve can operate over a wide range of speeds for a given shaft speed, the exact value depending principally upon the ratio of clearances and upon the ratio of radii of the bearing. Lower operating temperatures at high rotative speeds are to be expected by using a full-floating bearing. This lower operating temperature would be obtained at the expense of the load-carrying capacity of the bearing if, for comparison, the clearances remain the same in both bearings. A full-floating bearing having the same load capacity as a conventional journal bearing may be designed if decreased clearances are allowable.
Date: January 28, 1947
Creator: Shaw, M.C. & Nussdorfer, T.J.

Calibration Tests of a Japanese Log Rodmeter

Description: A Japanese log rodmeter of the rotating-vane impeller type, with a commutator on the impeller shaft, was calibrated in Langley tank no. 1. The rotational speed of two impellers was determined for forward speeds up to 24 knots at angles of yaw up to ?10 0 . In general, the rotational speeds of two apparently identical impellers tested in the rodmeter decreased with increasing yaw angle, right yaw causing a greater decrease than left yaw. The difference in calibration between the two impellers was approximately the same as that produced by a change in yaw angle from 50 left to 50 right. Evidence of cavitation within the impeller fairing appeared at speeds above 24 knots.
Date: March 14, 1949
Creator: Mottard, Elmo J.

Calibration Tests of a German Log Rodmeter

Description: A German log rodmeter of the pitot static type was calibrated in Langley tank no. 1 at speeds up to 34 knots and angles of yaw from 0 deg to plus or minus 10 3/4 degrees. The dynamic head approximated the theoretical head at 0 degrees yaw but decreased as the yaw was increased. The static head was negative and in general became more negative with increasing speed and yaw. Cavitation occurred at speeds above 31 knots at 0 deg yaw and 21 knots at 10 3/4 deg yaw.
Date: March 15, 1949
Creator: Mottard, Elmo J. & Stillman, Everette R.

Calibration of Instruments for Measuring Wind Velocity and Direction

Description: Signal Corps wind equipment AN/GMQ-1 consisting of a 3-cup anemometer and wind vane was calibrated for wind velocities from 1 to 200 miles per hour. Cup-shaft failure prevented calibration at higher wind velocities. The action of the wind vane was checked and found to have very poor directional accuracy below a velocity of 8 miles per hour. After shaft failure was reported to the Signal Corps, the cup rotors were redesigned by strengthening the shafts for better operation at high velocities. The anemometer with the redesigned cup rotors was recalibrated, but cup-shaft failure occurred again at a wind velocity of approximately 220 miles per hour. In the course of this calibration two standard generators were checked for signal output variation, and a wind-speed meter was calibrated for use with each of the redesigned cup rotors. The variation of pressure coefficient with air-flow direction at four orifices on a disk-shaped pitot head was obtained for wind velocities of 37.79 53.6, and 98.9 miles per hour. A pitot-static tube mounted in the nose of a vane was calibrated up to a dynamic pressure of 155 pounds per square foot, or approximately 256 miles per hour,.
Date: January 1, 1950
Creator: Vogler, Raymond D. & Pilny, Miroslav J.

Calculations of the Supersonic Wave Drag of Nonlifting Wings with Arbitrary Sweepback and Aspect Ratio: Wings Swept Behind the Mach Lines

Description: On the basis of a recently developed theory for finite sweptback wings at supersonic speeds, calculations of the supersonic wave drag at zero lift were made for a series of wings having thin symmetrical biconvex sections with untapered plan forms and various angles of sweepback and aspect ratios. The results are presented in a unified form so that a single chart permits the direct determination of the wave drag for this family of airfoils for an extensive range of aspect ratio and sweepback angle for stream Mach numbers up to a value corresponding to that at which the Mach line coincides with the wing leading edge. The calculations showed that in general the wave-drag coefficient decreased with increasing sweepback. At Mach numbers for which the Mach lines are appreciably ahead of the wing leading edge, the 'wave-drag coefficient decreased to an important extent with increases in aspect ratio or slenderness ratio. At Mach numbers for which the Mach lines approach the wing leading edge (Mach numbers approaching a value equal to the secant of the angle of sweepback), the wave-drag coefficient decreased with reductions in aspect ratio or slenderness ratio. In order to check the results obtained by the theory, a comparison was made with the results of tests at the Langley Memorial Aeronautical Laboratory of sweptback wing attached to a freely falling body. The variation of the drag with Mach number and aspect ratio as given by the theory appeared to be in reasonable.
Date: February 21, 1947
Creator: Harmon, Sidney M & Swanson, Margaret D

Correlation of the Trim Limits of Stability Obtained for a PB2Y-3 Flying Boat and a 1/8-Size Powered Dynamic Model

Description: Tests of a PB2Y-3 flying boat were made at the U.S> Naval Air Station, Patuxent River, Md., to determine its hydrodynamic trim limits of stability. Corresponding tests were also made of a 1/8-size powered dynamic model of the same flying boat in Langley tank no. 1. During the tank tests, the full-size testing procedure was reproduced as closely as possible in order to obtain data for a direct correlation of the results. As a nominal gross load of 66,000 pounds, the lower trim limits of the full-size and model were in good agreement above a speed of 80 feet per second. As the speed decreased below 80 feet per second, the difference between the model trim limits and full-scale trim limits gradually became larger. The upper trim limit of the model with flaps deflected 0 deg was higher than that of the full-size, but the difference was small over the speed range compared. At flap deflections greater than 0 deg, it was not possible to trim either the model of the airplane to the upper limit with the center of gravity at 28 percent of the mean aerodynamic chord. The decrease in the lower trim limits with increase in flap deflection showed good agreement for the airplane and model. The lower trim limits obtained at different gross loads for the full-size airplane were reduced to approximately a single curve by plotting trim against the square root of C(sub delta (sub o)) divided by C(sub V).
Date: April 22, 1947
Creator: Garrison, Charlie C. & Hacskaylo, Andrew