UNT Libraries Government Documents Department - 1,437 Matching Results

Search Results

Kinetics of Chemical Reactions in Flames

Description: In part I of the paper the theory of flame propagation is developed along the lines followed by Frank-Kamenetsky and one of the writers. The development of chain processes in flames is considered. A basis is given for the application of the method of stationary concentrations to reactions in flames; reactions with branching chains are analyzed. The case of a diffusion coefficient different from the coefficient of temperature conductivity is considered.
Date: June 1, 1946
Creator: Zeldovich, Y. & Semenov, N.

Analytical Treatment of Normal Condensation Shock

Description: The condensation of water vapor in an air consequences: acquisition of heat (liberated heat vaporization; loss of mass on the part of the flowing gas (water vapor is converted to liquid); change in the specific gas constants and of the ratio k of the specific heats (caused by change of gas composition). A discontinuous change of state is therefore connected with the condensation; schlieren photographs of supersonic flows in two-dimensional Laval nozzles show two intersecting oblique shock fronts that in the case of high humidities may merge near the point of intersection into one normal shock front.
Date: July 1, 1947
Creator: Heybey

Fundamental Aerodynamic Investigations for Development of Arrow-Stabilized Projectiles

Description: The numerous patent applications on arrow-stabilized projectiles indicate that the idea of projectiles without spin is not new, but has appeared in various proposals throughout the last decades. As far as projectiles for subsonic speeds are concerned, suitable shapes have been developed for sometime, for example, numerous grenades. Most of the patent applications, though, are not practicable particularly for projectiles with supersonic speed. This is because the inventor usually does not have any knowledge of aerodynamic flow around the projectile nor any particular understanding of the practical solution. The lack of wind tunnels for the development of projectiles made it necessary to use firing tests for development. These are obviously extremely tedious or expensive and lead almost always to failures. The often expressed opinion that arrow-stabilized projectiles cannot fly supersonically can be traced to this condition. That this is not the case has been shown for the first time by Roechling on long projectiles with foldable fins. Since no aerodynamic investigations were made for the development of these projectiles, only tedious series of firing tests with systematic variation of the fins could lead to satisfactory results. These particular projectiles though have a disadvantage which lies in the nature cf foldable fins. They occasionally do not open uniformly in flight, thus causing unsymmetry in flow and greater scatter. The junctions of fins and body are very bad aerodynamically and increase the drag. It must be possible to develop high-performance arrow-stabilized projectiles based on the aerodynamic research conducted during the last few years at Peenemuende and new construction ideas. Thus the final shape, ready for operational use, could be developed in the wind tunnel without loss of expensive time in firing tests. The principle of arrow-stabilized performance has been applied to a large number of caliburs which were stabilized by various means ...
Date: December 1, 1947
Creator: Kurzweg, Hermann

An Approximate Method for Calculation of the Laminar Boundary Layer with Suction for Bodies of Arbitrary Shape

Description: Various ways were tried recently to decrease the friction drag of a body in a flow; they all employ influencing the boundary layer. One of them consists in keeping the boundary layer Laminar by suction; promising tests have been carried out. Since for large Reynolds numbers the friction drag of the laminar boundary layer is much lower than that of the turbulent boundary layer, a considerable saving in drag results from keeping the boundary layer laminar, even with the blower power required for suction taken into account. The boundary layer is kept laminar by suction in two ways: first, by reduction of the thickness of the boundary layer and second, by the fact that the suction changes the form of the velocity distribution so that it becomes more stable, in a manner similar to the change by a pressure drop. There by the critical Reynolds number of the boundary layer (USigma*/V) (sub crit) becomes considerably higher than for the case without suction. This latter circumstance takes full effect only if continuous suction is applied which one might visualize realized through a porous wall. Thus the suction quantities required for keeping the boundary layer laminar become so small that the suction must be regarded as a very promising auxiliary means for drag reduction.
Date: March 1, 1949
Creator: Schlichting, H.

The Minimum Energy Loss Propeller

Description: Various cases are presented of the solution of the problem ot the most efficient propeller, more general cases being considered than the one by Betz in 1919: namely, that of a propeller under a limiting light load, The problem is solved directly and also with the aid of the Ritz method which became readily applicable after the author proposed a method for the solution of the propeller problem, in general, with the aid of trigonometric series. The design of a propeller with the aid of this method is given and an analysis is made of the effect of the fuselage and of the viscosity coefficient mu on the character of the solution of the variational problem.
Date: March 1, 1945
Creator: Poliakhov, N.

Heat Transfer in a Turbulent Liquid or Gas Stream

Description: The,theory of heat.transfer from a solid body to a liquid stream could he presented previously** only with limiting assumptions about the movement of the fluid (potential flow, laminar frictional flow). (See references 1, 2, and 3). For turbulent flow, the most important practical case, the previous theoretical considerations did not go beyond dimensionless formulas and certain conclusions as to the analogy between the friction factor and the unit thermal conductance, (See references 4, 5, 6, and 7,) In order to obtain numerical results, an experimental treatment of the problem was resorted to, which gave rise to numerous investigations because of the importance of this problem in many branches of technology. However, the results of these investigations frequently deviate from one another. The experimental results are especially dependent upon the overall dimensions and the specific proportions of the equipment. In the present work, the attempt will be made to develop systematically the theory of the heat transfer and of the dependence of the unit thermal conductance upon shape and dimensions, using as a basis the velocity distribution for turbulent flow set up by Prandtl and Von Karman.
Date: October 1, 1944
Creator: Latzko, H.

Determination of the Actual Contact Surface of a Brush Contact

Description: The number of partial contact surfaces of a brush-ring contact is measured by means of a statistical method. The particular brush is fitted with wicks - that is, insulated and cemented cylinders of brush material, terminating in the brush surface. The number of partial contact surfaces can be computed from the length of the rest periods in which such wicks remain without current. Resistance measurements enable the determination of the size of the contact surfaces. The pressure in the actual contact surface of a recently bedded brush is found to be not much lower than the Brinell hardness of the brush.
Date: August 1, 1944
Creator: Holm, Ragnar

Wind-Tunnel Investigations on a Changed Mustang Profile with Nose Flap Force and Pressure-Distribution Measurements

Description: Measurements are described which were taken in the large wind tunnel of the AVA on a rectangular wing "Mustang 2" with nose flap of a chord of 10 percent. Besides force measurements the results of pressure-distribution measurements are given and compared with those on the same profile "without" nose flap.
Date: September 1, 1947
Creator: Krueger, W.

Investigation of the Operating Properties of the Leakage Current Anemometer

Description: Freedom from inertia, erosion of electrodes, and reaction make the leakage current particularly appropriate for the measurement of flow velocities in gases. Apparatus previously described has now been improved by reducing the size of the electrodes by one -thousandth, as is necessary aerodynamically, and by increasing the magnitude of the current from 1000 to 10,000 times; the latter result was obtained.by use of mercury high-pressure lamps set up at the one focal point of an ellipsoidal reflector with the cathodes arranged at the other focal point or by use of suitable X-ray radiation. Families of calibration curves were taken with a number of vivid tests conditions of the greatest variety and the operating properties of the instrument were widely elucidated by calculation of the sensitivity to fluctuation; this was done at first for operation at stationary conditions only; due to the freedom from inertia the instationary conditions were thus also given. Accordingly, the leakage current anemometer ought to be appropriate for investigations of turbulence,.
Date: October 1, 1947
Creator: Fucks, Wilhelm

Measurements on Compressor-Blade Lattices

Description: At the end & 1940 an investigation of a guide-vane lattice for the compressor of a TL unit [NACA comment: Turbojet] was requested. The greatest possible Mach number had to be attained. The investigation was conducted with an annular lattice subjected to axial flow. A direct-current shunt motor with a useful output of 235 horsepower at en engine speed of 1800 qm was available for driving the necessary blower. In designing the blower the speed was set at 10,000 rpm. A gear box fran an armored car was used as gearing in which supplementary fresh oil lubrication was installed. The gear box was used to step up from low to high speeds. The blower that was designed is two stage. The hub-tip ratios are 0.79 to 0.82; the design pressure coefficient for each stage is 0.6 and the design flow coefficient is 0.4. The rotor dosimeter D sub a is 0.39 meters and the resulting peripheral speed is u sub a = 204 meters per second [NACA comment: Value corrected from the German]. The blower was entirely satisfactory. The construction of the test stand is shown in figure 1. The air flows in through an annular Inlet, which is used in the measurement of the quantity of air, and is deflected into an inward-pointing radial slot. A spiral motion is imparted to the air by a guide-vane installation manually adjustable as desired, which enables injection of the air, after it has been deflected from the radial direction to the axial direction, into the lattice being investigated at any desired angle.
Date: August 1, 1948
Creator: Weinig, F.

The Compressible Flow Past Various Plane Profiles Near Sonic Velocity

Description: In an earlier report UM No.1117 by Gothert,the single-source method was applied to the compressible flow around circles, ellipses, lunes, and around an elongated body of revolution at different Mach numbers and the results compared as far as possible with the calculations by Lamla ad Busemann. Essentially, it was found that with favorable source arrangement the single-source method is in good agreement with the calculations of the same degree of approximation by.Lamla and Busemann. Near sonic velocity the number of steps must be increased considerably in order to sufficiently approximate the adiabatic curve. After exceeding a certain Mach number where local supersonic fields occur already, it was no longer possible, in spite of the substantially increased number of steps, to obtain a systematic solution because the calculation diverged. This result,was interpreted to mean that above this point of divergence the symmetrical type of flow ceases to exist and changes into the unsymmetrical type characterized by compressibility shocks.
Date: January 13, 1949
Creator: Goethert, B. & Kawalki, K. H.

Jet Diffusion in Proximity of a Wall

Description: When auxiliary jet engines are installed on airframes; as well as in some new designs, the jet engines are mounted in such a way that the jet stream exhausts in close proximity to the fuselage. This report deals with the behavior of the jet in close proximity to a two-dimensional surface. The experiments were made to find out whether the axially symmetric stream tends to approach the flat surface. This report is the last of a series of four partial test reports of the Goettingen program for the installation of jet engines, dated October 12, 1943. This report is the complement of the report on intake in close proximity to a wall.
Date: May 1, 1949
Creator: Kuechemann, D.

Flow Pattern in a Converging-Diverging Nozzle

Description: The present report describes a new method for the prediction of the flow pattern of a gas in the two-dimensional and axially symmetrical case. It is assumed that the expansion of the gas is adiabatic and the flow stationary. The several assumptions necessary of the nozzle shape effect, in general, no essential limitation on the conventional nozzles. The method is applicable throughout the entire speed range; the velocity of sound itself plays no singular part. The principal weight is placed on the treatment of the flow near the throat of a converging-diverging nozzle. For slender nozzles formulas are derived for the calculation of the velocity components as function of the location.
Date: March 1, 1949
Creator: Oswatitsch, K. & Rothstein, W.

Investigation of Single Stage Axial Fans

Description: The following investigations are connected with experiments on fans carried out by the author in the Gouttingen Aerodynamic Laboratory within the framework of the preliminary experiments for the new Gouttingen wind-tunnel project. A fan rotor was developed which had very high efficiency at the design point corresponding to moderate pressure and which, in addition, could operate at a proportionally high pressure, rise. To establish the determining operating factors the author carried out extensive theoretical investigation in Hannover. In this it was necessary, to depart from the usual assumption of vanishing radial velocities. The calculations were substantially lightened by the introduction of diagrams. The, first part of the.report describes the theoretical investigations; the second, the experiments carried out at Gouttingen.
Date: April 1, 1944
Creator: Ruden, P.

On the Installation of Jet Engine Nacelles on a Wing Fourth Partial Report: Pressure-Distribution Measurements on a Sweptback Wing with Jet Engine Nacelle

Description: The present report, which deals with pressure-distribution measurements made on a sweptback wing with a jet engine nacelle, is similar to a report on pressure-distribution measurements on a rectangular wing with a jet engine nacelle (second partial report). Here, in investigations preliminary to high-speed measurements, as in the second partial report, useful arrangements and fillet designs have been discovered.
Date: July 1, 1949
Creator: Buschner, R.

Effect of the Acceleration of Elongated Bodies of Revolution Upon the Resistance in a Compressible Flow

Description: The problem of the motion of an elongated body of revolution in an incompressible fluid may, as is known, be solved approximately with the aid of the distribution of sources along the axis of the body. In determining the velocity field, the question of whether the body moves uniformly or with an acceleration is no factor in the problem. The presence of acceleration must be taken into account in determining the pressures acting on the body. The resistance of the body arising from the accelerated motion may be computed either directly on the basis of these pressures or with the aid of the so-called associated masses (inertia coefficients). A different condition holds in the case of the motion of bodies in a compressible gas. In this case the finite velocity of sound must be taken into account.
Date: May 1, 1949
Creator: Frankl, F. I.

Report on Investigation of Developed Turbulence

Description: The recent experiments by Jakob and Erk, on the resistance of flowing water in smooth pipes, which are in good agreement with earlier measurements by Stenton and Pannell, have caused me to change my opinion that the empirical Blasius law (resistance proportional to the 7/4 power of the mean velocity) was applicable up to arbitrarily high Reynolds numbers. According to the new tests the exponent approaches 2 with increasing Reynolds number, where it remains an open question whether or not a specific finite limiting value of the resistance factor lambda is obtained at R = infinity. With the collapse of Blasius' law the requirements which produced the relation that the velocity in the proximity of the wall varied in proportion to the 7th root of the wall distance must also become void. However, it is found that the fundamental assumption that led to this relationship can be generalized so as to furnish a velocity distribution for any empirical resistance law. These fundamental assumptions can be so expressed that for the law of velocity distribution in proximity of the wall as well as for that of friction at the wall, a form can be found in which the pipe diameter no longer occurs, or in other words, that the processes in proximity of a wall are not dependent upon the distance of the opposite wall.
Date: January 18, 1949
Creator: Prandtl, L.

Heat Transfer Through Turbulent Friction Layers

Description: The "general Prandtl number" Pr(exp 1) - A(sub q)/A Pr, aside from the Reynolds number determines the ratio of turbulent to molecular heat transfer, and the temperature distribution in turbulent friction layers. A(sub q) = exchange coefficient for heat; A = exchange coefficient for momentum transfer. A formula is derived from the equation defining the general Prandtl number which describes the temperature as a function of the velocity. For fully developed thermal boundary layers all questions relating to heat transfer to and from incompressible fluids can be treated in a simple manner if the ratio of the turbulent shear stress to the total stress T(sub t)/T in the layers near the wall is known, and if the A(sub q)/A can be regarded as independent of the distance from the wall. The velocity distribution across a flat smooth channel and deep into the laminar sublayer was measured for isothermal flow to establish the shear stress ratio T(sub t)/T and to extend the universal wall friction law. The values of T(sub t)/T which resulted from these measurements can be approximately represented by a linear function of the velocity in the laminar-turbulent transition zone. The effect of the temperature relationship of the material values on the flow near the wall is briefly analyzed. It was found that the velocity at the laminar boundary (in contrast to the thickness of the laminar layer) is approximately independent of the temperature distribution. The temperature gradient at the wall and the distribution of temperature and heat flow in the turbulent friction layers were calculated on the basis of the data under two equations. The derived formulas and the figures reveal the effects of the Prandtl number, the Reynolds number, the exchange quantities and the temperature relationship of the material values.
Date: September 1, 1943
Creator: Reichardt, H.

Theory of Heat Transfer in Smooth and Rough Pipes

Description: The heat transfer accompanying turbulent flow in tubes has been treated by a new theory of wall turbulence, and a formula for smooth tubes has been derived which is asymptotic at Re approaches infinity. It agrees very well with the data available to date. The formula also holds for the flow along a flat plate if lambda is based on the velocity far away. For rough tubes, the unit conductance is shown to be a function of kv*/upsilon; the two empirical constants (delta(r), n) which appear in equation (52) cannot yet be determined because of lack of experimental data.
Date: December 1, 1942
Creator: Mattioli, G. D.

Profile Measurements During Cavitation

Description: One of the problems of modern cavitation research is the experimental determination of the wing loads on airfoils during cavitation. Such experiments were made on various airfoils with the support of the naval ministry at the Kaiser Wilhelm Institute for Flow Research at Goettingen.
Date: January 1, 1944
Creator: Walchner, O.

Determination of the Stresses Produced by the Landing Impact in the Bulkheads of a Seaplane Bottom

Description: The present report deals with the determination of the impact stresses in the bulkhead floors of a seaplane bottom. The dynamic problem is solved on the assumption of a certain elastic system, the floor being assumed as a weightless elastic beam with concentrated masses at the ends (due to the mass of the float) and with a spring which replaces the elastic action of the keel in the center. The distributed load on the floor is that due to the hydrodynamic force acting over a certain portion of the bottom. The pressure distribution over the width of the float is assumed to follow the Wagner law. The formulas given for the maximum bending moment are derived on the assumption that the keel is relatively elastic, in which case it can be shown that at each instant of time the maximum bending moment is at the point of juncture of the floor with the keel. The bending moment at this point is a function of the half width of the wetted surface c and reaches its maximum value when c is approximately equal to b/2 where b is the half width of the float. In general, however, for computing the bending moment the values of the bending moment at the keel for certain values of c are determined and a curve is drawn. The illustrative sample computation gave for the stresses a result approximately equal to that obtained by the conventional factory computation.
Date: January 1, 1944
Creator: Darevsky, V. M.

Boundary Layer Theory, Part 2, Turbulent Flows

Description: The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part. These actual flows show a special characteristic, denoted as turbulence. The character of a turbulent flow is most easily understood the case of the pipe flow. Consider the flow through a straight pipe of circular cross section and with a smooth wall. For laminar flow each fluid particle moves with uniform velocity along a rectilinear path. Because of viscosity, the velocity of the particles near the wall is smaller than that of the particles at the center. i% order to maintain the motion, a pressure decrease is required which, for laminar flow, is proportional to the first power of the mean flow velocity. Actually, however, one ob~erves that, for larger Reynolds numbers, the pressure drop increases almost with the square of the velocity and is very much larger then that given by the Hagen Poiseuille law. One may conclude that the actual flow is very different from that of the Poiseuille flow.
Date: April 1, 1949
Creator: Schlichting, H.

Recent Results on High-Pressure Axial Blowers

Description: Considerable progress has, in recent times, been attained in the development of the high-pressure axial blower by well-planned research. The efforts are directed toward improving the efficiencies, which are already high for the axial blower, and in particular the delivery pressure heads. For high pressures multistage arrangements are used. Of fundamental importance is the careful design of all structural parts of the blower that are subject to the effects of the flow. In the present report, several recent results and experiences are reported, which are based on results of German engine research.
Date: April 1, 1947
Creator: Eckert, B.

The Distribution of Loads on Rivets Connecting a Plate to a Beam under Transverse Loads

Description: This report gives theoretical discussion of the distribution of leads on rivets connecting a plate to a beam under transverse leads. Two methods of solution are given which are applicable to loads up to the limit of proportionality; in the first the rivets are treated as discrete members, and in the second they are replaced by a continuous system of jointing. A method of solution is also given which is applicable to the case when nonlinear deformations occur in the rivets and the plate, but not in the beam. The methods are illustrated by numerical examples, and these show that the loads carried by the rivets and the plate are less than the values given by classical theory, which does not take into account the slip of the rivets, even below the limit of proportionality. The difference is considerably accentuated when nonlinear deformations occur in the restructure and the beam then carries the greater portion of the bending moment. If the material of the beam has a higher proportional limit and a higher ultimate strength than the material of the plate, there is thus a transfer of load from weaker to stronger material, and this is to the advantage of the structure. The methods given are of simple application and are recommended for use in the design of light-alloy structures when the design lead is likely to be above the proportional limit.
Date: April 1, 1947
Creator: Vogt, F.