UNT Libraries Government Documents Department - 5,546 Matching Results

Search Results

Atlas of Irradiated Fuel Structures

Description: Compilation of photographs, photomicrograph mosaics of fuel element cross-sections, and autoradiographs of irradiated fuels. These images were colleted to understand in-reactor fuel kinetics and illustrate structural changes that occur during irradiation of ceramic fuel elements.
Date: October 1966
Creator: Horn, G. R.

Financial Innovation Among the Community Wind Sector in the United States

Description: In the relatively brief history of utility-scale wind generation, the 'community wind' sector - defined here as consisting of relatively small utility-scale wind power projects that are at least partly owned by one or more members of the local community - has played a vitally important role as a 'test bed' or 'proving ground' for wind turbine manufacturers. In the 1980s and 1990s, for example, Vestas and other now-established European wind turbine manufacturers relied heavily on community wind projects in Scandinavia and Germany to install - and essentially field-test - new turbine designs. The fact that orders from community wind projects seldom exceeded more than a few turbines at a time enabled the manufacturers to correct any design flaws or manufacturing defects fairly rapidly, and without the risk of extensive (and expensive) serial defects that can accompany larger orders. Community wind has been slower to take root in the United States - the first such projects were installed in the state of Minnesota around the year 2000. Just as in Europe, however, the community wind sector in the U.S. has similarly served as a proving ground - but in this case for up-and-coming wind turbine manufacturers that are trying to break into the broader U.S. wind power market. For example, community wind projects have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010),1 Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Just as it has provided a proving ground for new turbines, so too has the community wind sector in the United States served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market ...
Date: January 19, 2011
Creator: Bolinger, Mark

Persistence and transport potential of chemicals in a multimedia environment

Description: Persistence in the environment and potential for long-range transport are related since time in the environment is required for transport. A persistent chemical will travel longer distances than a reactive chemical that shares similar chemical properties. Scheringer (1997) has demonstrated the correlation between persistence and transport distance for different organic chemicals. However, this correlation is not sufficiently robust to predict one property from the other. Specific chemicals that are persistent mayor may not exhibit long-range transport potential. Persistence and long-range transport also present different societal concerns. Persistence concerns relate to the undesired possibility that chemicals produced and used now may somehow negatively affect future generations. Long-range transport concerns relate to the undesired presence of chemicals in areas where these compounds have not been used. Environmental policy decisions can be based on either or both considerations depending on the aim of the regulatory program. In this chapter, definitions and methods for quantifying persistence and transport potential of organic chemicals are proposed which will assist in the development of sound regulatory frameworks.
Date: February 1, 2000
Creator: van de Meent, D.; McKone, T.E.; Parkerton, T.; Matthies, M.; Scheringer, M.; Wania, F. et al.

A View on Future Building System Modeling and Simulation

Description: This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).
Date: April 1, 2011
Creator: Wetter, Michael

TOXNET and Beyond-Using the National Library of Medicine's Environmental Health and Toxicology Portal

Description: The purpose of this training is to familiarize participants with reliable online environmental health and toxicology information, from the National Library of Medicine and other reliable sources. Skills and knowledge acquired in this training class will enable participants to access, utilize, and refer others to environmental health and toxicology information. After completing this course, participants will be able to: (1) Identify quality, accurate, and authoritative online resources pertaining to environmental health, toxicology, and related medical information; (2) Demonstrate the ability to perform strategic search techniques to find relevant online information; and (3) Apply the skills and knowledge obtained in this class to their organization's health information needs. NLMs TOXNET (Toxicology Data Network) is a free, Web-based system of databases on toxicology, environmental health, hazardous chemicals, toxic releases, chemical nomenclatures, and specialty areas such as occupational health and consumer products. Types of information in the TOXNET databases include: (1) Specific chemicals, mixtures, and products; (2) Unknown chemicals; and (3) Special toxic effects of chemicals in humans and/or animals.
Date: January 1, 2011
Creator: Templin-Branner, Wilma

Direct conversion of nuclear radiation energy

Description: This book presents a comprehensive study of methods for converting nuclear radiationi directly without resorting to a heat cycle. The concepts discussed primarily involve direct collection of charged particles released by radioisotopes and by nuclear and thermonuclear reactors. Areas considered include basic energy conversion, charged-particle transport theory, secondary-electron emission, and leakage currents and associated problems. Applications to both nuclear instrumentaion and power sources are discussed. Problems are also included as an aid to the reader or for classroom use.
Date: January 1, 1970
Creator: Miley, George H.

Bioananalytics of Human Microdosing

Description: Abstract not provided
Date: May 2, 2011
Creator: Buchholz, B. A.; Sarachine Falso, M. J.; Stewart, B. J.; Haack, K. W.; Ognibene, T. J.; Salazar Quintero, G. A. et al.

Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

Description: Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.
Date: January 20, 2011
Creator: Moffet, Ryan C.; Tivanski, Alexei V. & Gilles, Mary K.

Bridging the Gap in the Chemical Thermodynamic Database for Nuclear Waste Repository: Studies of the Effect of Temperature on Actinide Complexation

Description: Recent results of thermodynamic studies on the complexation of actinides (UO{sub 2}{sup 2+}, NpO{sub 2}{sup +} and Pu{sup 4+}) with F{sup -}, SO{sub 4}{sup 2-} and H{sub 2}PO{sub 4}{sup -}/HPO{sub 4}{sup 2-} at elevated temperatures are reviewed. The data indicate that, for all systems except the 1:1 complexation of Np(V) with HPO{sub 4}{sup 2-}, the complexation of actinides is enhanced by the increase in temperature. The enhancement is primarily due to the increase in the entropy term (T{Delta}S) that exceeds the increase in the enthalpy ({Delta}H) as the temperature is increased. These data bridge the gaps in the chemical thermodynamic database for nuclear waste repository where the temperature could remain significantly higher than 25 C for a long time after the closure of the repository.
Date: December 21, 2009
Creator: Rao, Linfeng; Tian, Guoxin; Xia, Yuanxian; Friese, Judah I.; Zanonato, PierLuigi & Di Bernardo, Plinio

Physical and Mechanical Properties of Copper and Copper Alloys

Description: High strength, high conductivity copper alloys are prime candidates for high heat flux applications in fusion energy systems. This chapter reviews the physical and mechanical properties of pure copper and copper alloys with the focus on precipitation-hardened CuCrZr and dispersion-strengthened CuAl25 alloys. The effect of neutron irradiation on copper and copper alloys is reviewed in terms of radiation effects on physical properties and mechanical properties (tensile properties, fracture toughness, fatigue and creep-fatigue), irradiation creep and void swelling. The effect of irradiation on the microstructure of copper and copper alloys and dislocation channeling is also presented. Joining techniques for copper alloys in fusion plasma facing components are briefly discussed.
Date: January 1, 2012
Creator: Li, Meimei & Zinkle, Steven J.

Radiation-Induced Effects on Microstructure

Description: Irradiation of materials with particles that are sufficiently energetic to create atomic displacements can induce significant microstructural alteration, ranging from crystalline-to-amorphous phase transitions to the generation of large concentrations of point defect or solute aggregates in crystalline lattices. These microstructural changes typically cause significant changes in the physical and mechanical properties of the irradiated material. A variety of advanced microstructural characterization tools are available to examine the microstructural changes induced by particle irradiation, including electron microscopy, atom probe field ion microscopy, X-ray scattering and spectrometry, Rutherford backscattering spectrometry, nuclear reaction analysis, and neutron scattering and spectrometry. Numerous reviews, which summarize the microstructural changes in materials associated with electron and heavy ion or neutron irradiation, have been published. These reviews have focused on pure metals as well as model alloys, steels, and ceramic materials. In this chapter, the commonly observed defect cluster morphologies produced by particle irradiation are summarized and an overview is presented on some of the key physical parameters that have a major influence on microstructural evolution of irradiated materials. The relationship between microstructural changes and evolution of physical and mechanical properties is then summarized, with particular emphasis on eight key radiation-induced property degradation phenomena. Typical examples of irradiated microstructures of metals and ceramic materials are presented. Radiation-induced changes in the microstructure of organic materials such as polymers are not discussed in this overview.
Date: January 1, 2012
Creator: Zinkle, Steven J.

MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

Description: In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room ...
Date: February 1, 2009
Creator: Heaven, Michael C.; Gibson, John K. & Marcalo, Joaquim

Volume visualization of multiple alignment of large genomicDNA

Description: Genomes of hundreds of species have been sequenced to date, and many more are being sequenced. As more and more sequence data sets become available, and as the challenge of comparing these massive ''billion basepair DNA sequences'' becomes substantial, so does the need for more powerful tools supporting the exploration of these data sets. Similarity score data used to compare aligned DNA sequences is inherently one-dimensional. One-dimensional (1D) representations of these data sets do not effectively utilize screen real estate. As a result, tools using 1D representations are incapable of providing informatory overview for extremely large data sets. We present a technique to arrange 1D data in 3D space to allow us to apply state-of-the-art interactive volume visualization techniques for data exploration. We demonstrate our technique using multi-millions-basepair-long aligned DNA sequence data and compare it with traditional 1D line plots. The results show that our technique is superior in providing an overview of entire data sets. Our technique, coupled with 1D line plots, results in effective multi-resolution visualization of very large aligned sequence data sets.
Date: July 25, 2005
Creator: Shah, Nameeta; Dillard, Scott E.; Weber, Gunther H. & Hamann, Bernd

Quantitive DNA Fiber Mapping

Description: Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.
Date: January 28, 2008
Creator: Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F. & Weier, Heinz-Ulli G.

The effect of temperature on the speciation of U(VI) in sulfate solutions

Description: Sulfate, one of the inorganic constituents that could be present in the nuclear waste repository, forms complexes with U(VI) and affects its migration in the environment. Results show that the complexation of U(VI) with sulfate is enhanced by the increase in temperature. The effect of temperature on the complexation and speciation of U(VI) in sulfate solutions is discussed.
Date: September 15, 2008
Creator: Rao, Linfeng & Tian, Guoxin