UNT Libraries Government Documents Department - Browse


Experimental Study of Ballistic-Missile Base Heating with Operating Rocket

Description: A rocket of the 1000-pound-thrust class using liquid oxygen and JP-4 fuel as propellant was installed in the Lewis 8- by 6-foot tunnel to permit a controlled study of some of the factors affecting the heating of a rocket-missile base. Temperatures measured in the base region are presented from findings of three motor extension lengths relative to the base. Data are also presented for two combustion efficiency levels in the rocket motor. Temperature as high as 1200 F was measured in the base region because of the ignition of burnable rocket gases. combustibles that are dumped into the base by accessories seriously aggravate the base-burning temperature rise.
Date: September 23, 1958
Creator: Nettle, J. Cary

Investigation of Inlet Control Parameters for an External-Internal-Compression Inlet from Mach 2.1 to 3.0

Description: Investigation of the control parameters of an external-internal compression inlet indicates that the cowl-lip shock provides a signal to position the spike and to start the inlet over a Mach number range from 2.1 to 3.0. Use of a single fixed probe position to control the spike over the range of conditions resulted in a 3.7-count loss in total-pressure recovery at Mach 3.0 and 0 deg angle of attack. Three separate shock-sensing-probe positions were required to set the spike for peak recovery from Mach 2.1 to 3.0 and angles of attack from 0 deg to 6 deg. When the inlet was unstarted, an erroneous signal was obtained from the normal-shock control through most of the starting cycle that prevented the inlet from starting. Therefore, it was necessary to over-ride the normal-shock control signal and not allow the control to position the terminal shock until the spike was positioned.
Date: September 23, 1958
Creator: Anderson, B. H. & Bowditch, D. N.

Measurements of the buffeting loads on the wing and horizontal tail of a 1/4-scale model of the X-1E airplane

Description: The buffeting loads acting on the wing and horizontal tail of a 1/4-scale model of the X-1E airplane have been measured in the Langley 16-foot transonic tunnel in the Mach number range from 0.40 to 0.90. When the buffeting loads were reduced to a nondimensional aerodynamic coefficient of buffeting intensity, it was found that the maximum buffeting intensity of the horizontal tail was about twice as large as that of the wing. Comparison of power spectra of buffeting loads acting on the horizontal tail of the airplaneand of the model indicated that the model horizontal tail, which was of conventional force-test-model design, responded in an entirely different mode than did the airplane.This result implied that if quantitative extrapolation of model data to flight conditions were desired a dynamically scaled model of the rearward portion of the fuselage and empennage would be required. A study of the sources of horizontal-tail buffeting of the model indicated that the wing wake contributed a large part of the total buffeting load. At one condition it was found that removal of the wing wake would reduce the buffeting loads on the horizontal tail to about one-third of the original value.
Date: September 17, 1958
Creator: Rainey, A Gerald & Igoe, William B

Free-Flight Investigation of Aerodynamic Heat Transfer to a Simulated Glide-Rocket Shape at Mach Numbers up to 10

Description: Heat-transfer measurements were made on a simulated glide-rocket shape in free flight at Mach numbers up to 10 and free-stream Reynolds numbers of 2 x 10 based on distance along surface from apex and 3 x 10 based on nominal leading-edge diameter. The model simulated the bottom of a 75 deg delta wing at 8O deg angle of attack. The data indicated that for the test conditions a modified three-dimensional stagnation-point theory will predict to reasonable engineering accuracy the heating on a highly swept wing leading edge, the heating being reduced by sweep by the 3/2 power of the cosine of the sweep angle. The data also indicate that laminar heating rates over the windward surface of a highly swept flat glider wing at moderate angles of attack can be predicted with reasonable engineering accuracy by flat-plate theory using wedge local flow conditions and basing Reynolds numbers on lengths from the wing leading edge parallel to the surface center line.
Date: September 10, 1958
Creator: Swanson, A. G.