UNT Libraries Government Documents Department - Browse

ABOUT BROWSE FEED
Model Study of Marmet Lock Filling and Emptying System, Kanawha River, West Virginia: Hydraulic Model Investigation
From abstract: This report documents the laboratory model investigation of the lock filling and emptying system for lock addition planned for the Marmet Navigation Project.
[Evolution of Sedimentary Basins/Onshore Oil and Gas Investigations--Santa Maria Province: Chapters Y and Z]
From abstract: A complex Neogene history characterizes the offshore Santa Maria basin and the northwest margin of the western Transverse Ranges, California. This history includes the transition from subduction to a transtensional and then transpressional plate boundary, including about 900 of clockwise rotation of the western Transverse Ranges. This report uses seismic reflection data to document the geometry of structures that accommodated this deformation and offshore well data to date and correlate the sediments which were affected by the different tectonic episodes.
Postglacial Lahars and Potential Hazards in the White Salmon River System on the Southwest Flank of Mount Adams, Washington
From introduction: This report describes the results of a study assessing volcanic hazards at Mount Adams Volcano.
Guadalupe River and Bypass Culvert, San Jose, California: Hydraulic Model Investigation
From abstract: The ultimate goal of numerous experiments is to develop the desired flow split for the design discharge of 14,600 cfs while maintaining acceptable water-surface elevations in the upstream channel.
[Evolution of Sedimentary Basins/Onshore Oil and Gas Investigations--Santa Maria Province: Chapters W and X]
From abstract: Bulletin W is about the deformation of the Mesozoic Franciscan Complex of the Eastern Santa Maria basin in California. Bulletin X is about the regional thermal maturity of the surface rocks of the mentioned basin as well as the Santa Barbara-Ventura basin area in California.
Burns Harbor, Indiana, Monitoring Study, Volume 1: Overview of Approach and Results
From introduction: The program's objective is to acquire information through intensive monitoring of coastal projects in an effort to improve project purpose and attainment, design procedures, construction methods, and operation and maintenance techniques.
Geology of the Pennsylvanian and Permian Cutler Group and Permian Kaibab Limestone in the Paradox Basin, Southeastern Utah and Southwestern Colorado
From abstract: This report talks about the geology of the Pennsylvanian and Permian Cutler Group that consists of the lower Cutler beds, Cedar Mesa Sandstone, Organ Rock Formation, White Rim Sandstone, and De Chelly Sandstone. The report also talks about the Permian Kaibab Limestone in the Paradox Basin that overlays the Cutler.
Geosynthetic Confined Pressurized Slurry (GeoCoPS): Supplemental Notes for Version 1.0
This report presents an overview of an analysis to calculate both stresses in the geosynthetic and geometry of the tubes capable of encapsulating slurry.
Geosynthetic Confined Pressurized Slurry (GeoCoPS): Supplemental Notes for Version 1.0 [Floppy Disk]
This report presents an overview of an analysis to calculate both stresses in the geosynthetic and geometry of the tubes capable of encapsulating slurry.
1995 Midnite Mine Radiation Survey
Abstract: During the week of September 4, 1995, personnel from the U.S. Bureau of Mines conducted a Ra-226 survey at the Midnite Mine. One hundred thirty measurements were made on a rectangular grid with 150-m spacings. Concurrently, Shepherd Miller, Inc., took gross gamma readings in gR/h at the same grid points. In addition, the USBM collected 17 soil samples to be analyzed for radium, thorium, and potassium. The results of this survey are summarized in this report.
3DTOM, Three-Dimensional Geophysical Tomography
Abstract: 3DTOM is a DOS-compatible computer program developed by the Mines U.S. Bureau of for three-dimensional tomographic imaging of the subsurface at mine sites. The program uses the simultaneous iterative reconstruction technique (SIRT) to invert travel- time data and produce maps of wave velocity, or to invert amplitude data and generate maps of wave attenuation coefficients. Either seismic (compressional and/or shear) or electromagnetic (e.g., radio or radar) wave data may be used. Ray tracing in 3DTOM uses several different methods, including ray bending, network theory, and a combination of these. User-defined constraints are important in reducing the mathematical nonuniqueness of inversions based on limited data. 3DTOM permits the use of hard constraints, or soft constraints based on fuzzy logic, to allow for uncertainty in the constraints. Reliable subsurface images are useful in many different mine-related problems, including void detection, fracture detection, fluid monitoring, and qualitative stress evaluation.
Application of Field Measurements and Computer Modeling to Evaluate Deep Mine Shaft Stability in Northern Idaho
Abstract: Researchers at the U.S. Bureau of Mines have developed personal-computer-based data acquisition, instrumentation, and mine visualization and modeling techniques to evaluate a mine accessway in a deep hard-rock mine in northern Idaho. These techniques were applied to a mine shaft in a large silver mine that has been in operation for many years. A very deep, rectangular, timber-supported shaft extending to depths exceeding 2.3 km (7,500 ft) had been deforming continuously as a result of nearby mining, resulting in operational problems. Preliminary visual observations and rock and support monitoring confirmed that severe diagonal distortion was occurring. Extensive field measurements and data analysis confirmed initial observations, provided insights into the cause of deformation, and defined a general approach to structural modeling. Computer analysis of the problem was initiated by developing a three-dimensional model of the terrain. This represented a volume of rock approximately 80 km3 (40 x 1010 ft) and an area on the surface surrounding the mine 9 km2 (3 square miles). Based on this model, a three-dimensional, finiteelement analysis was conducted to establish boundary conditions for sequentially more detailed two- and three-dimensional submodels of the shaft area. Results from the computer study are being used to develop new approaches to mine design and to provide design guidelines for deep mine accessways subject to severe rock-mass loading conditions.
Burial and Thermal History of the Paradox Basin, Utah and Colorado, and Petroleum Potential of the Middle Pennsylvanian Paradox Formation
From abstract: This is a report on the burial and thermal history of the Paradox basin in Utah and Colorado, and the petroleum potential of the middle Pennsylvanian Paradox Formation.
Data Dictionary and Discussion for the Midnite Mine GIS Database
Abstract: A geographic information system (GIS) database has been developed by the U.S. Bureau of Mines (USBM) for the Midnite Mine and surroundings in northeastern Washington State (Stevens County) on the Spokane Indian Reservation. The mine is an open pit uranium mine which has been inactive since 1981. The GIS database was compiled to serve as a repository and source of historical and research information on the mine site. The database supported USBM hydrological and reclamation research on the mine site. The database also will be used by the Bureau of Land Management and the Bureau of Indian Affairs (as well as others) for environmental assessment and reclamation planning for future remediation and reclamation of the site. This report describes the data in the GIS database and their characteristics. The report also discusses known backgrounds on the data sets and any special considerations encountered by the USBM in developing the database. Most of the database also is planned to be available to the public as a two-CD-ROM set, although separately from this report.
Dust Control Considerations for Deep-Cut Mining when Utilizing Exhaust Ventilation and a Scrubber
Abstract: The U.S. Bureau of Mines conducted a series of laboratory tests to investigate the effectiveness of using a flooded-bed scrubber with exhaust ventilation in deep-cut faces of up to 12.2 m in length. An experimental test program to determine the impact on respirable dust levels resulting from changes in face airflow, curtain setback distance, operator positioning, and operating parameters of the external spray system on the miner was completed. Gravimetric sampling was conducted in the immediate return and at three sampling locations on the off-curtain side of the entry. Statistically significant differences in dust levels on the order of 0.5 to 1.2 mg/m3 were observed between specific sampling locations and changes in several test parameters. Several of the statistically significant relationships were found at the inby operator position, which is the least desirable of the operator locations that were tested. The relative effectiveness of the dust control at the other sampling locations was not severely impacted with the scrubber operating. Dust control was the primary focus of this research; results indicated that a flooded-bed scrubber and exhaust ventilation can be a viable system for extracting deep cuts up to 12.2 m in length. The impact on methane was not evaluated.
Gold Placers of the Historical Fortymile River Region, Alaska
From introduction: This report focuses on the placer geology of individual creeks; mining, history of the area, high terrace gravels, and the gold source of the Fortymile River area in Alaska.
Groundwater Flow Model (GWFM) Development, Midnite Mine, Wellpinit, Washington
This Report of Investigations (RI) is one of several describing work that has been completed by the U.S. Bureau of Mines at the Midnite uranium mine, Wellpinit, WA. Dean (in preparation) describes the entire project history. Four diskettes containing three archives compressed using WINZIP (or PKZIP) accompany the current RI. The ultimate purpose of this research effort was to develop a groundwater flow model (GWFM) for the Midnite Mine that can be utilized by the contractor preparing the Environmental Impact Statement (EIS) and by other interested parties. The objectives of this study were to (1) develop a shell model of the geology at the site, (2) develop the basis for a GWFM that will meet criteria described elsewhere in this RI and that can be updated with new information generated during the EIS process, and (3) present the results of two steady-state simulations of groundwater flow within the bedrock units. The current GWFM generates nonunique solutions because flow data for the bedrock units currently do not exist. However, the model provides useful results with respect to direction of flow. More data are required to model the bedrock aquifer system accurately. Volmnetric flow rates of the bedrock units should be measured or estimated. Measurements obtained from one or two drains completed in the bedrock in the southern portion of the site should yield these values.
Hydraulic Characterization of Midnite Mine, Wellpinit, Washington: Summary of 1994 Field Season
The Midnite Mine is an inactive uranium mine on the Spokane Indian Reservation in Washington State. Oxidation of sulfide-containing minerals, primarily pyrite, produces acidic water. Uranium and other radioactive constituents are chemically leached and dissolved in ground and surface waters. The U.S. Bureau of Mines (USBM) has worked closely with the Bureau of Indian Affairs, the Bureau of Land Management, and the Spokane Tribe of Indians to address data needs for remediation of the disturbed area. As part of this effort, USBM personnel initiated research to determine water quality and define groundwater flow characteristics. Preliminary results of hydraulic stress tests performed in the bedrock at the site are described. Slug tests and pumping tests were conducted using preexisting USBM monitoring wells. Slug test results were used to generate hydraulic conductivity estimates for fractured and unfractured intrusives. The pumping tests demonstrated varying degrees of spatial continuity. Hydraulically continuous fractured zones along north-south planes were demonstrated in two cases for distances of 90 and 116 m (300 and 380 ft). The short-term pumping tests provided no evidence of east-west hydraulic continuity in fractured zones.
Hydrologic and Geophysical Studies at Midnite Mine, Wellpinit, Washington: Summary of 1995 Field Season
Abstract: The Midnite Mine is an inactive, hard-rock uranium mine on the Spokane Indian Reservation in Washington State. Oxidation of sulfide-containing minerals, primarily pyrite, produces large quantities of acidic water. Uranium and other radioactive constituents are chemically leached and dissolved in ground and surface waters. The U.S. Bureau of Mines (USBM) has worked closely with the Bureau of Indian Affairs, the Bureau of Land Management, and the Spokane Tribe of Indians to address data needs for remediation of the disturbed area. As part of this effort, USBM personnel initiated research to determine water quality and define groundwater flow characteristics. Long-term changes in water quality and the results of slug tests and two geophysical surveys are described. Of the locations monitored, only two exhibited water quality degradation over time. Hydraulic conductivity measurements from slug tests are reported for five additional locations in the bedrock. Relative values of hydraulic conductivity from slug tests agreed well with ranked specific capacity data. A geophysical survey identified buried constructed features that channel subsurface water to a contaminated seep. Historic aerial photos corroborated the results of the geophysical study. A new geophysical technique was successfully used to monitor hydraulic and geochemical responses to a pumping test in saturated waste rock.
Inflatable Devices for Use in Combating Mine Fires
Abstract: The U.S. Bureau of Mines is conducting full-scale laboratory studies on the development of lightweight inflatable devices that can be used for rapidly isolating mine fire areas to allow for fire suppression and/or personnel escape. These inflatable devices were able to stop airflows of over 1,100 m3/min within several minutes. The remotely installed bag was designed to rapidly isolate the fire zone and to then serve, if necessary, as a containment form for the remote injection of low-dersil organic or inorganic foams. Other inflatable bag concepts that were tested include an inflatable feed-tube seal for high-expansion foam generators and a positive pressure inflatable walk-through escape device. Laboratory studies indicated that a high-expansion foam plug will travel 183 m through an entry with a 4.5 pct rise in elevation before foam leakage from around the inflatable feed-tube seal. Additionally, the positive-pressure, inflatable walk-through escape device with its "pass-through" feature may allow extra time for personnel evacuation. All of these inflatable devices have shown merit during laboratory studies in providing a rapid method for isolation of a mine fire prior to suppressant foam injection or personnel escape.
Midnite Mine Summary Report
The Midni'e Mine is an inactive, hard-rock uranium mine in Stevens County, WA. Oxidation of sulfide-containing minerals in the ore body produces large quantities of acidic water. The U.S. Bureau of Mines was directed by Congress in Fiscal Year 1994 to perform technological research on the treatment of radioactive water and disposal of treatment residues at the Midnite Mine and en overall site reclamation. This Report of Investigations summarizes the studies that were completed on: 1) treatment alternatives for uranium contaminated acid mine drainage, and 2) overall site reclamation, including: ground water flowpaths in the bedrock, radiation, and waste rock reactivity. As an aid to site reclamation, a Geographic Information System database was also produced that contains available current and historic data and information on the Midnite Mine. This report explains the scope of the Bureau's study and summarizes the results of its investigations.
A Profile of Workers' Experiences and Preparedness in Responding to Underground Mine Fires
The purpose of this study was to determine mine workers' state of fire-fighting preparedness and the technology being used to detect and respond to underground coal mine fires. To investigate this problem, 214 underground coal miners were interviewed by U.S. Bureau of Mines researchers. Frequency distributions of workers' responses are presented in this report, along with segments of narrative accounts, to profile miners' fire-fighting capabilities. The data indicated that much variability exists from mine to mine and that there are several important changes operators may undertake in order to make miners better prepared to deal with fire underground: select appropriate sensors, establish and test a warning and communication protocol, construct a system capable of delivering hundreds of gallons of water per minute for sustained periods, institute formal fire preparedness audits, develop case studies of events that occur at an operation to use as teaching and assessment tools, and provide structured practice that can be incorporated into fire drills.
Reactivity in the South Spoils and Hillside Dump at the Midnite Mine
The Midnite Mine is an inactive open-pit uranium mine located on the Spokane Indian Reservation in Washington State. Drill samples from two large waste rock dumps on the site, known as South Spoils and Hillside Dump, were collected with a Becker hammer drill and evaluated to determine potential of the rock to generate acid mine drainage (AMD). Waste rock at this mine contains both pyrite and uranium, and AMD effects are more complicated on this site than most in that uranium is soluble in both acidic and neutral aqueous solutions. Although AMD protocols identified 26% of the South Spoils samples as potentially acid, under 7% of the spoil samples were actually producing acid. Considerable calcite exists in the South Spoils, and weathering feldspars further contribute to acid neutralization. The Hillside Dump has low concentrations of pyrite and calcite that acid-base accounting protocols would predict to be non-acidic. Accumulation of sulfate in rocks with concentrations of less than 0.3% S causes some of those normally non-acid producing rocks to produce acid in the Hillside Dump.
Real-Time Monitoring of Field Measurements for Mine Design: Greens Creek Mine, Admiralty Island, Alaska
Abstract: Researchers at the U.S. Bureau of Mines conducted field investigations at the Greens Creek Mine in southeast Alaska for the purpose of validating computer design of mining methods and assessing real-time monitoring capabilities. The field study required the application of new technology because of the remoteness of the study site, the need for timely acquisition of data, and a limited budget for instruments and data acquisition. Various sensors were installed to monitor rock mass deformation and strain, temperature, SO gas emissions, and blasting. Data were collected through a distributed personal computer network and high-speed modems. These readings were used to develop visualization models of underground metal mining operations and drift-and-fill mining and real-time graphics displays of ground conditions. Results of the field tests showed that it is possible to gather, process, visualize, and verify mine designs on a real-time basis.
U.S. Bureau of Mines Final Report : Midnite Mine Water Treatment Studies
The U.S. Bureau of Mines reviewed and evaluated options for treatment of the approximately 500 million gallons of contaminated water in flooded pits at the Midnite Mine on the Spokane Indian Reservation. While current lime treatment produces discharge quality water, the resultant sludges are radioactive, presenting a disposal problem. Of the 24 commercial processes and seven emerging technologies evaluated, none demonstrated a significant advantage over ion exchange using a strong base anion exchange resin in either laboratory or field tests. Uranium was lowered from 22 ppm to 0.2 ppb in treated water. Radium was lowered from 44 pCi/L to <1 pCi/L using a modified precipitation with BaCl2 . The natural zeolite, clinoptilolite, lowered radium to 6-8 pCi/L when used as an ion exchanger.
Review and Evaluation of Extractants for Strontium Removal Using Magnetically Assisted Chemical Separation
A literature review on extractants for strontium removal was initially performed at Northern Illinois University to assess their potential in magnetically assisted chemical separation. A series of potential strontium extractants was systematically evaluated there using radioanalytical methods. Initial experiments were designed to test the uptake of strontium from nitric acid using several samples of magnetic extractant particles that were coated with various crown ether ligands. High partition coefficient (K(sub d)) values for stimulant tank waste were obtained. Further studies demonstrated that the large partitioning was due to uncoated particles.
A Review of Dynamic Characteristics of Magnetically Levitated Vehicle Systems
The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.
Practical Superconductor Development for Electrical Power Applications, Annual Report: 1995
Annual report for the superconductor program at Argonne National Laboratory discussing the group's activities and research. This report describes the technical progress of research and development efforts aimed at producing superconducting components in the (Bi,Pb)-Sr-Ca-Cu, (T,Pb,Bi,V)- (Ba,Sr)-Ca-Cu, and Y-Ba-Cu oxide systems including: synthesis and heat treatment of high-Te superconductors, formation of monolithic and composite conductors, characterization of structures and superconducting and mechanical properties, and fabrication and testing of prototype components.
VARIANT: VARIational Anisotropic Nodal Transport for Multidimensional Cartesian and Hexagonal Geometry Calculation
The theoretical basis, implementation information and numerical results are presented for VARIANT (VARIational Anisotropic Neutron Transport), a FORTRAN module of the DIF3D code system at Argonne National Laboratory. VARIANT employs the variational nodal method to solve multigroup steady-state neutron diffusion and transport problems. The variational nodal method is a hybrid finite element method that guarantees nodal balance and permits spatial refinement through the use of hierarchical complete polynomial trial functions. Angular variables are expanded with complete or simplified P₁, P₃ or P₅5 spherical harmonics approximations with full anisotropic scattering capability. Nodal response matrices are obtained, and the within-group equations are solved by red-black or four-color iteration, accelerated by a partitioned matrix algorithm. Fission source and upscatter iterations strategies follow those of DIF3D. Two- and three-dimensional Cartesian and hexagonal geometries are implemented. Forward and adjoint eigenvalue, fixed source, gamma heating, and criticality (concentration) search problems may be performed.
Automotive Vehicle Sensors
This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.
Characterization of Plutonium-Bearing Wastes by Chemical Analysis and Analytical Electron Microscopy
This report summarizes the results of characterization studies of plutonium-bearing wastes produced at the US Department of Energy weapons production facilities. Several different solid wastes were characterized, including incinerator ash and ash heels from Rocky Flats Plant and Los Alamos National Laboratory; sand, stag, and crucible waste from Hanford; and LECO crucibles from the Savannah River Site. These materials were characterized by chemical analysis and analytical electron microscopy. The results showed the presence of discrete PuO2, PuO₂x, and Pu4O7 phases, of about 1micrometer or less in size, in all of the samples examined. In addition, a number of amorphous phases were present that contained plutonium. In all the ash and ash heel samples examined, plutonium phases were found that were completely surrounded by silicate matrices. Consequently, to achieve optimum plutonium recovery in any chemical extraction process, extraction would have to be coupled with ultrafine grinding to average particle sizes of less than 1 micrometer to liberate the plutonium from the surrounding inert matrix.
Parallel Solution of the Time-Dependent Ginzburg-Landau Equations and other Experiences using BlockComm-Chameleon and PCN on the IBM SP, Intel iPSC/860, and Clusters of Workstations
Time-dependent Ginzburg-Landau (TDGL) equations are considered for modeling a thin-film finite size superconductor placed under magnetic field. The problem then leads to the use of so-called natural boundary conditions. Computational domain is partitioned into subdomains and bond variables are used in obtaining the corresponding discrete system of equations. An efficient time-differencing method based on the Forward Euler method is developed. Finally, a variable strength magnetic field resulting in a vortex motion in Type II High-critical-temperature superconducting films is introduced. The authors tackled the problem using two different state-of-the-art parallel computing tools: BlockComm/Chameleon and PCN. They had access to two high-performance distributed memory supercomputers: the Intel iPSC/860 and IBM SP1. They also tested the codes using, as a parallel computing environment, a cluster of Sun Sparc workstations.
The DART Dispersion Analysis Research Tool: a Mechanistic Model for Predicting Fission-Product-Induced Swelling of Aluminum Dispersion Fuels : User's Guide for Mainframe, Workstation, and Personal Computer
This report describes the primary physical models that form the basis of the DART mechanistic computer model for calculating fission-product-induced swelling of aluminum dispersion fuels; the calculated results are compared with test data. In addition, DART calculates irradiation-induced changes in the thermal conductivity of the dispersion fuel, as well as fuel restructuring due to aluminum fuel reaction, amorphization, and recrystallization. Input instructions for execution on mainframe, workstation, and personal computers are provided, as is a description of DART output. The theory of fission gas behavior and its effect on fuel swelling is discussed. The behavior of these fission products in both crystalline and amorphous fuel and in the presence of irradiation-induced recrystallization and crystalline-to-amorphous-phase change phenomena is presented, as are models for these irradiation-induced processes.
Implementation and Validation of a Reynolds Stress Model in the COMMIX-1C/RSM and CAPS-3D/RSM Codes
A Reynolds stress model (RSM) of turbulence, based on seven transport equations, has been linked to the COMMIX-1C/RSM and CAPS-3D/RSM computer codes. Six of the equations model the transport of the components of the Reynolds stress tensor and the seventh models the dissipation of turbulent kinetic energy. When a fluid is heated, four additional transport equations are used: three for the turbulent heat fluxes and one for the variance of temperature fluctuations. All of the analytical and numerical details of the implementation of the new turbulence model are documented. The model was verified by simulation of homogeneous turbulence.
Minimum Additive Waste Stabilization (MAWS), Phase 1: Soil Washing Final Report
As a result of the U.S. Department of Energy's environmental restoration and technology development activities, GTS Duratek, Inc., and its subcontractors have demonstrated an integrated thermal waste treatment system at Fernald, OH, as part the Minimum Additive Waste Stabilization (MAWS) Program. Specifically, MAWS integrates soil washing, vitrification of mixed waste streams, and ion exchange to recycle and remediate process water to achieve, through a synergistic effect, a reduction in waste volume, increased waste loading, and production of a durable, leach-resistant, stable waste form suitable for disposal. This report summarizes the results of the demonstration/testing of the soil washing component of the MAWS system installed at Fernald (Plant 9). The soil washing system was designed to (1) process contaminated soil at a rate of 0.25 cubic yards per hour; (2) reduce overall waste volume and provide consistent-quality silica sand and contaminant concentrates as raw material for vitrification; and (3) release clean soil with uranium levels below 35 pCi/g. Volume reductions expected ranged from 50-80 percent; the actual volume reduction achieved during the demonstration reached 66.5 percent. The activity level of clean soil was reduced to as low as 6 pCi/g from an initial average soil activity level of 17.6 pCi/g (the highest initial level of soil provided for testing was 41 pCi/g). Although the throughput of the soil washing system was inconsistent throughout the testing period, the system was online for sufficient periods to conclude that a rate equivalent to 0.25 cubic yards per hour was achieved.
Physics Division Annual Review: April 1, 1994-March 31, 1995
Annual report of activities of the Argonne National Laboratory Physics Division, including heavy-ion nuclear physics research, operation and development of ATLAS, medium-energy nuclear physics research, theoretical physics, atomic and molecular physics research.
Validation of the Generic TRUEX Model Using Data from TRUEX Demonstrations with Actual High-Level Waste
The Generic TRUEX Model (GTM) was used to simulate three different counter-current flowsheet tests performed using mixer-settlers that had been carried out prior to 1993 in the Chemical Processing Facility, Tokai-works, of the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. The feed for the PNC runs was the highly active raffinate from reprocessing of spent fuel from fast breeder reactors. The PNC demonstration runs were planned without using the GTM. Results predicted by the GTM and those obtained experimentally by PNC for the three demonstration runs are compared. Effects of stage efficiency, nitrate complexation, temperature, and equipment type are also included.
Aqueous Biphasic Extraction of Uranium and Thorium from Contaminated Soils : Final Report
The aqueous biphasic extraction (ABE) process for soil decontamination involves the selective partitioning of solutes and fine particulates between two immiscible aqueous phases. The biphase system is generated by the appropriate combination of a water-soluble polymer (e.g., polyethylene glycol) with an inorganic salt (e.g., sodium carbonate). Selective partitioning results in 99 to 99.5% of the soil being recovered in the cleaned-soil fraction, while only 0.5 to 1% is recovered in the contaminant concentrate. The ABE process is best suited to the recovery of ultrafine, refractory material from the silt and clay fractions of soils. During continuous countercurrent extraction tests with soil samples from the Fernald Environmental Management Project site (Fernald, OH), particulate thorium was extracted and concentrated between 6- and 16-fold, while the uranium concentration was reduced from about 500 mg/kg to about 77 mg/kg. Carbonate leaching alone was able to reduce the uranium concentration only to 146 mg/kg. Preliminary estimates for treatment costs are approximately $160 per ton of dry soil. A detailed flowsheet of the ABE process is provided.
Extraction of Long-Lived Radionuclides from Caustic Hanford Tank Waste Supernatants
A series of polymer-based extraction systems, based on the use of polyethylene glycols (PEGs) or polypropylene glycols (PPGs), was demonstrated to be capable of selective extraction and recovery of long-lived radionuclides, such as Tc-99 and I-129, from Hanford SY-101 tank waste, neutralized current acid waste, and single-shell tank waste simulants. During the extraction process, anionic species like TcO₄⁻ and I⁻ are selectively transferred to the less dense PEG-rich aqueous phase. The partition coefficients for a wide range of inorganic cations and anions, such as sodium, potassium, aluminum, nitrate, nitrite, and carbonate, are all less than one. The partition coefficients for pertechnetate ranged from 12 to 50, depending on the choice of waste simulant and temperature. The partition coefficient for iodide was about 5, while that of iodate was about 0.25. Irradiation of the PEG phase with gamma-ray doses up to 20 Mrad had no detectable effect on the partition coefficients. The most selective extraction systems examined were those based on PPGs, which exhibited separation factors in excess of 3000 between TcO₄⁻ and NO₃⁻/NO₂⁻. An advantage of the PPG-based system is minimization of secondary waste production. These studies also highlighted the need for exercising great care in extrapolating the partitioning behavior with tank waste simulants to actual tank waste.
Information Exchange within the U.S. Department of Energy Pollution Prevention Community
Improving Pollution Prevention and Waste Minimization Program (PP/WMIN) technologies, actions, and culture could be an important cost-cutting step for the US Department of Energy (DOE). Communicating ideas, concepts, process changes, and achievements is essential for the success of this program. The need to openly communicate ideas and concepts in a cost-effective manner is essential in an organization that has such diverse components as research and development, weapons production, and power generation. This approach is in contrast to the historic DOE culture developed within the cold war period in which compartmentalization, independence, and secrecy were stressed. DOE has now recognized that for any pollution prevention program to be successful, the many diverse elements of the organization must share information. Avenues for such information exchange are examined in this report.
LEVSEEP: Analysis Software for Levee Underseepage and Rehabilitation
This report uses the computer software LEVSEEP to describe analysis methodology for levee underseepage analyses and rehabilitation. Information required for data input, calculation procedures, output, and graphics is presented. In addition, comprehensive results of case studies and parameter analyses utilizing LEVSEEP are included.
Nonlinear Dynamics of a Stack/Cable System
In this study, we developed a coupled model of wind-induced vibration of a stack, based on an unsteady-flow theory and nonlinear dynamics of the stack's heavy elastic suspended cables. Numerical analysis was performed to identify excitation mechanisms. The stack was found to be excited by vortex shedding. Once lock-in resonance occurred, the cables were excited by the transverse motion of the stack. Large-amplitude oscillations of the cables were due to parametric resonance. Appropriate techniques have been proposed to alleviate the vibration problem.
Technology Development Goals for Automotive Fuel Cell Power Systems
Directed Technologies, Inc. has previously submitted a detailed technical assessment and concept design for a mid-size, five-passenger fuel cell electric vehicle (FCEV), under contract to Argonne National Laboratory. As a supplement to that contract, DTI has reviewed the literature and conducted a preliminary evaluation of two energy carriers for the FCEV: hydrogen and methanol. This report compares the estimated fuel efficiency, cost of producing and delivering the fuel, and the resultant life cycle costs of the FCEV when fueled directly by hydrogen and when fueled by methanol with on-board reforming to produce the required hydrogen-rich gas for the fuel cell. This work will be supplemented and expanded under the Ford contract with the Department of Energy to develop the FCEV and its fuel infrastructure.
ANL Technical Support Program for DOE Environmental Restoration and Waste Management Annual Report October 1993 - September 1994
A program was established for DOE Environmental Restoration and Waste Management (EM) to evaluate factors that are anticipated to affect waste glass reaction during repository disposal, especially in an unsaturated environment typical of what may be expected for the proposed Yucca Mountain repository site.
Chemical Technology Division Annual Technical Report: 1994
Annual report of the Argonne National Laboratory Chemical Technology Division (CMT) discussing the group's activities during 1994. These included electrochemical technology; fossil energy research; hazardous waste research; nuclear waste programs; separation science and technology; electrometallurgical technology; actinide recovery; applied physical chemistry; basic chemistry research; analytical chemistry.
Argonne National Laboratory-East Site Environmental Report for Calendar Year 1994
This report discusses the results of the environmental protection program at Argonne National Laboratory-East (ANL) for 1994. To evaluate the effects of ANL operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the ANL site were analyzed and compared to applicable guidelines and standards. A variety of radionuclides was measured in air, surface water, groundwater, soil, grass, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and ANL effluent water were analyzed.
Radiolysis and Hydrolysis of Magnetically Assisted Chemical Separation Particles
This report discusses experiments with various ways to conduct a magnetically assisted chemical separation (MACS) process, designed to separate transuranic (TRU) elements out of high-level waste (HLW) or TRU waste.
Surveillance of Site A and Plot M : Report for 1994
The results of the environmental surveillance program conducted at Site A/Plot M in the Palos Forest Preserve area for 1994 are presented. The surveillance program is the ongoing remedial action that resulted from the 1976-1978 radiological characterization of the site. That study determined that very low levels of hydrogen-3 (as tritiated water) had migrated from the burial ground and were present in two nearby hand-pumped picnic wells. The current program consists of sample collection and analysis of air, surface and subsurface water, and bottom sediment.
User Interface Program for Secure Electronic Tags
This report summarizes and documents the efforts of Argonne National Laboratory (ANL) in developing a secure tag communication user interface program comprising a tag monitor and a communication tool. This program can perform the same functions as the software that was developed at the Lawrence Livermore National Laboratory (LLNL), but it is enhanced with a user-friendly screen. It represents the first step in updating the TRANSCOM Tracking System (TRANSCOM) by incorporating a tag communication screen menu into the main menu of the TRANSCOM user program. A working version of TRANSCOM, enhanced with ANL secure-tag graphics, will strongly support the Department of Energy Warhead Dismantlement/Special Nuclear Materials Control initiatives. It will allow commercial satellite tracking of the movements and operational activities of treaty-limited items and transportation vehicles throughout Europe and the former USSR, as well as the continental US.
Application of NMR Spectroscopy and Multidimensional Imaging to the Gelcasting Process and in-situ Real-Time Monitoring of Cross-Linking Polyacrylamide Gels
In the gelcasting process, a slurry of ceramic powder in a solution of organic monomers is cast in a mold. The process is different from injection molding in that it separates mold-filling from setting during conversion of the ceramic slurry to a formed green part. In this work, NMR spectroscopy and imaging have been conducted for in-situ monitoring of the gelation process and for mapping the polymerization. ¹H nuclear magnetic resonance spectra have been obtained during polymerization of a premix of soluble reactive methacrylamide (monomer) and N, N'-methylene bisacrylamide (cross-linking molecules). The premix was polymerized by adding ammonium persulfate (initiator) and tetramethyl-ethylene-diamine (accelerator) to form long-chain, cross-linked polymers. The time-varying spin-lattice relaxation times T₁ during polymerization have been studied at 25 and 35 C, and the variation of spectra and T₁ with respect to extent of polymerization has been determined. To verify homogeneous polymerization, multidimensional NMR imaging was utilized for in-situ monitoring of the process. The intensities from the images are modeled and the correspondence shows a direct extraction of T₁ data from the images.