UNT Libraries Government Documents Department - 5,164 Matching Results

Search Results

Altitude-Wind-Tunnel Investigation of Oil-System Performance of XR-4360-8 Engine in XTB2D-1 Airplane

Description: An investigation was conducted in the Cleveland altitude wind tunnel to determine the aerodynamic characteristics and the oil delivery critical altitude of the oil-cooler installation of an XTB2D-1 airplane. The investigation was made with the propeller removed end with the engine operating at 1800 brake horsepower, an altitude of 15,000 feet (except for tests of oil-delivery critical altitude), oil-cooler flap deflections from -20 degrees to 20 degrees and inclinations of the thrust axis of 0 degrees, 1.5 degrees, and 6 degrees. At an inclination of the thrust axis of 0 degrees and with the propeller operating, the total-pressure recovery coefficient at the face of the oil cooler varied from 0.84 to 1.10 depending on the flap deflection. With the propeller removed, the best pressure recovery at the face of the oil cooler was obtained at an inclination of the thrust axis of 1.5 degrees. Air-flow separation occurred on the inner surface of the upper lip of the oil-cooler duct inlet at an inclination of the thrust axis of 0 degrees and on the inner surface of the lower lip at 6 degrees. Static pressure coefficients over the duct lips were sufficiently low that no trouble from compressibility would be encountered in level flight. The oil-delivery critical altitude at cruising power (2230 rpm, 1675 bhp) was approximately 18,500 feet for the oil system tested.
Date: September 4, 1946
Creator: Conrad, E. William

Investigation of Three Design Modifications of the NACA Injection Impeller in an R-3350 Engine

Description: An investigation was conducted to determine the effects of three design modifications of the original NACA injection impeller on the performance of an R-3350 engine. Different methods of injecting the fuel into the impeller air stream were studied and evaluated from the individual cylinder fuel-air ratios and the resulting cylinder temperatures. Each impeller was tested for a range of engine powers normally used in flight operation. The relatively simple design of the original injection impeller produced approximately the same mixture- and temperature-distribution characteristics as the modified impellers of more complex design. None of the modifications appreciably affected the manifold pressure, the combustion-air flow, nor the throttle angle required to maintain a given engine power,.
Date: September 9, 1946
Creator: Hickel, Robert O. & Michel, Donald J.

Wind-Tunnel Tests to Determine Aileron Characteristics of the McDonnell XFD-1 Airplane, TED No. NACA 23102

Description: Tests were performed on a partial span of the wing of a McDonnell XFD-1 airplane to determine a combination of sealed internal balance and spring-tab stiffness for the aileron that would give satisfactory stick-force characteristics for the airplane. Two sealed internal balances were tested in combination with spring tabs of various stiffnesses. One of the combinations was tested at several speeds to determine the variation of stick force with speed. Estimates, based on the results of the tests, indicate that for this airplane any reduction of stick force by use of the spring tab reduces the helix angle pb/2V below the required value of 0.09. The estimates show that, of the configurations tested, the most satisfactory combination for obtaining a stick force of 30 pounds at 300 miles per hour indicated airspeed is a 0.48-chord internal balance in combination with a spring-tab stiffness of 500 pounds per inch. With this combination, a wing-tip helix angle of 0.078 is estimated. Stick-force curves for all configurations show a rapid increase in stick force above approximately 20 deg. total aileron deflection.
Date: September 26, 1946
Creator: Yates, Campbell C. & Schneiter, Leslie E.

Free-Spinning-Tunnel Tests of a 1/18-Scale Model of the Fairchild XNQ-1 Airplane, TED No. NACA 2398

Description: Spin tests have been performed in the Langley 20-foot free-spinning tunnel on a 1/18-scale model of the Fairchild XNQ-1 airplane. The spin and recovery characteristics of the model were determined for the normal gross-weight loading and for two variations from this loading - center of gravity moved rearward and relative mass distribution increased along the fuselage. These tests were performed for two vertical-tail plan forms. The investigation also included simulated pilot-escape tests and rudder-force tests. The recovery characteristics of the model were satisfactory for all conditions tested by full reversal of the rudder and by simultaneous neutralization of the rudder and elevator. It was indicated that if necessary to escape from the spinning airplane, the pilot should jump from the outboard side of the fuselage and as far rearward as possible. Aa determined from spin model tests, the rudder pedal force required to reverse the rudder for recovery from the spin will be light.
Date: September 30, 1946
Creator: Daughtridge, Lee T., Jr.

Flight Investigation of Effect of Various Vertical-Tail Modifications on the Directional Stability and Control Characteristics of the P-63A-1 Airplane (AAF No. 42-68889)

Description: Because the results of preliminary flight tests had indicated. the P-63A-1 airplane possessed insufficient directional stability, the NACA and the manufacturer (Bell Aircraft Corporation) suggested three vertical-tail modifications to remedy the deficiencies in the directional characteristics. These modifications included an enlarged vertical tail formed by adding a tip extension to the original vertical tail, a large sharp-edge ventral fin, and a small dorsal fin. The enlarged vertical tail involved only a slight increase in total vertical-tail area from 23.73 to 26.58 square feet but a relatively much larger increase in geometric aspect ratio from 1.24 to 1.73 based on height and area above the horizontal tail. At the request of the Air Material Command, Army Air Forces, flight tests were made to determine the effect of these modifications and of some combinations of these modifications on the directional stability and control characteristics of the airplane, In all, six different vertical-tail. configurations were investigated to determine the lateral and directional oscillation characteristics of the airplane, the sideslip characteristics, the yaw due to ailerons in rudder-fixed rolls from turns and pull-outs, the trim changes due to speed changes; and the trim changes due to power changes. Results of the tests showed that the enlarged vertical tail approximately doubled the directional stability of the airplane and that the pilots considered the directional stability provided by the enlarged vertical tail to be satisfactory. Calculations based on sideslip data obtained at an indicated airspeed of 300 miles per hour showed that the directional stability of the airplane with the original vertical tail corresponded to a value of 0(sub n beta) of -0.00056 whereas for the enlarged vertical tail the estimated va1ue of C(sub n beta) was -0.00130, The ventral fin was found to increase by a moderate amount the directional stability of the airplane with ...
Date: October 7, 1946
Creator: Johnson, Harold I.

Flight and test-stand investigation of high-performance fuels in Pratt & Whitney R-1830-94 engines IV : comparison of cooling characteristics of flight and test-stand engines

Description: The cooling characteristics of three R-1830-94 engines, two of which were mounted in a test stand and the other in a B-24D airplane, were investigated and the results were compared. The flight tests were made at a pressure altitude of 7000 feet; the test-stand runs were made at ground-level atmospheric conditions. Three cooling runs were made for each engine: variable cooling-air pressure drop, variable carburetor-air flow, and variable fuel-air ratio. Actual cylinder temperatures of the three engines at nearly the same operating conditions of charge-air flow, fuel-air ratio, and cooling-air pressure drop paralleled predicted temperatures for the same conditions. This result was found to be true for a limited period of engine running time, this period coinciding with the time during which the cooling-correlation data were taken.
Date: October 8, 1946
Creator: Werner, Milton & Dandois, Marcel

Altitude cooling investigation of the R-2800-21 engine in the P-47G airplane II : investigation of the engine & airplane variables affecting the cylinder temperature distribution

Description: The data obtained from cooling tests of an R-2800-21 engine installed in a p-47G airplane were studied to determine which engine and airplane operation variables were mainly responsible for the extremely uneven temperature distribution among the 18 engine cylinders obtained at the medium and high engine-power conditions. The tests consisted of flights at altitudes from 5000 to 35,000 feet for the normal range of engine and airplane operation. The results of the study showed that a flow condition in the induction system associated with the wide-open throttle position, which affected either the fuel air or charge distribution, was primarily responsible for the uneven temperature distribution. For the range of fuel-air ratios tested (0.080 to 0.102), the temperature distribution remained essentially unchanged. The individual effects of thrust-axis inclination, cowl-flap opening, and quantity of auxiliary air were found to be secondary in importance. At low angles of throttle opening, engine speed was found to have little effect on the temperature pattern.
Date: October 9, 1946
Creator: Pesman, Gerard J & Kaufman, Samuel J

Altitude cooling investigation of the R-2800-21 engine in the P-47g airplane III : individual-cylinder temperature reduction by means of intake-pipe throttle and by coolant injection

Description: Flight tests were conducted on a R-2800-21 engine in the P-47G airplane to determine the effect on the wall temperatures of cylinder 10 of throttling the charge in the intake pipe and of injecting a water-ethanol coolant into the intake pipe. Cylinder 10 was chosen for this investigation because it runs abnormally hot (head temperatures of the order of 45 F higher than those of the next hottest cylinder) at the medium and high-power conditions. Tests with interchanged cylinders showed that the excessive temperatures of cylinder 10 were inherent in the cylinder location and were not due to the mechanical condition of the cylinder assembly. Throttling the charge in the intake pipe is a simpler method than coolant injection into the intake pipe particularly when only one cylinder is considerably hotter than any other. Coolant injection into the individual cylinders is a more efficient method than throttling in the intake pipe and is warranted when several cylinders are to be cooled or when parts of the complex equipment required are already available.
Date: October 9, 1946
Creator: Bell, E Barton; Valerino, Michael F & Manganiello, Eugene J

Altitude-Wind-Tunnel Investigation of Performance of Several Propellers on YP-47M Airplane at High Blade Loading, 1, Aeroproducts H20C-162-X11M2 Four-Blade Propeller

Description: An investigation was made in the Cleveland Altitude wind tunnel to determine the performance of an Aeroproducts H20C-162-X11M2 four-blade propeller on a YP-47M airplane at high blade loadings and high engine powers. The propeller characteristics were obtained for a range of power coefficients from 0.30 to 1.00 at free-stream Mach numbers of 0.40 and 0.50. The results of the force measurements are indicative only of trends in propeller efficiency with changes in power coefficient and advance-diameter ratio because unknown interference effects existed during the investigation. At a free-stream Mach number of 0.40, the envelopes of the efficiency curves decreased about 11% between advance-diameter ratios of 2.40 and 4.40. An increase in power coefficient from 0.30 to 0.80 at an advance-diameter ratio of 2.40 had little effect on the propeller efficiency. A change in power coefficient from 0.40 to 1.00 at an advance-diameter ratio of 4.40 increased the propeller efficiency by about 40%. For conditions below the stall the thrust loading on the outboard blade sections increased more rapidly than on the inboard sections as the power coefficient was increased or as the advance-diameter ratio was decreased. For conditions beyond the stall, the thrust loading decreased on the outboard sections and increased on the inboard sections.
Date: October 11, 1946
Creator: Saari, Martin J. & Wallner, Lewis E.

Langley Full-Scale Tunnel Investigation of a 1/3-Scale Model of the Chance Vought XF5U-1 Airplane

Description: The results of an investigation of a 1/3-scale model of the Chance Vought XF5U-1 airplane in the Langley full-scale tunnel are presented in this report. The maximum lift and stalling characteristics of several model configurations, the longitudinal stability characteristics of the model, and the effectiveness of the control surfaces were determined with the propellers removed. The propulsive characteristics, the effect of propeller operation on the lift, and the static thrust of the model propellers were determined at several propeller-blade angles. The results with the propellers removed showed that the maximum lift coefficient of the complete model configuration was only 0.97 was compared with the value of 1.31 for the model configuration in which the engine-air ducts and canopy are removed. The model with the propellers removed (normal center-of-gravity position) has a positive static margin, stick fixed, varying from 5 to 13 percent of the mean aerodynamic chord throughout the unstalled range of lift coefficients. The unit horizontal tail is sufficiently powerful to trim the airplane with the propellers removed throughout the unstalled range of lift coefficients. The peak propulsive efficiencies for beta = 20 degrees and beta = 30 degrees were increased 7 percent at C(sub L) congruent to 0.67 and 20 percent at C(sub L) congruent to 0.74, respectively, with the propellers rotating upward in the center than with the propellers rotating downward in the center. Indications are that the minimum forward-flight speed of the airplane for full-power operation at sea level will be about 90 miles per hour. Decreasing the weight and increasing the power reduced this value of minimum speed and there were no indications from the results of a lower limit to the minimum speed.
Date: October 11, 1946
Creator: Lange, Roy H.; Cocke, Bennie W., Jr. & Proterra, Anthony J.

Waters Loads on the XJL-1 Hull as Obtained in Langley Impact Basin, TED No. NACA 2413.3

Description: An investigation was conducted in the Langley impact basin of the water loads on a half scale model of the XJL-1 hull whose forebody has a vee bottom with exaggerated chine flare. The impact loads, moments, and pressures were determined for a range of landing conditions. A normal full-scale landing speed of 86 miles per hour was represented with effective flight paths ranging from 0.6deg to 11.6deg. Landings were made with both fixed trim and free-to-trim mounting of the float over a trim range of -15deg to 12deg into smooth water and into waves having equivalent full-scale length. of 120 feet and heights ranging from 1 to 4 feet. All data and results presented in this report are given in terms of equivalent full-scale values. Summary tables and illustrative plots are used in presenting the material. The following maximum values of load and pressure are those which are apropos for effective flight paths less than 6.5deg which was the maximum value obtained in tests with the XJL-1 hull model representing full-scale landings with vertical velocity of 4.5 feet per second into 4-foot waves. The maximum local pressure on the flat portion of the bottom is 130 pounds per square inch which was measured on a 2-inch-diameter circular area near the step. The maximum local pressure obtained in the curved area near the chines is 200 pounds per square inch. This pressure was also measured near the step.
Date: October 11, 1946
Creator: Steiner, Margaret F. & Miller, Robert W.

Preliminary Tests of a Buffet Stall-Warning Device on a 1/5-Scale Model of the Republic XP-84 Airplane

Description: During the first flight tests of the Republic XP-84 airplane it was discovered that there was a complete lack of stall warning. A short series of development tests of a suitable stall-warning device for the airplane was therefore made on a 1/5-scale model in the Langley 300 MPH 7- by 10-foot tunnel. Two similar stall-warning devices, each designed to produce early root stall which would provide a buffet warning, were tested. It appeared that either device would give a satisfactory buffet warning in the flap-up configuration, at the cost of an increase of 8 or 10 miles per hour in minimum speed. Although neither device seemed to give a true buffet warning in the flaps-down configuration, it appeared that either device would improve the flaps-down stalling characteristics by lessening the severity of the stall and by maintaining better control at the stall. The flaps-down minimum-speed increase caused by the devices was only 1 or 2 miles per hour.
Date: October 30, 1946
Creator: Tucker, Warren A. & Comisarow, Paul

Characteristics of a Sealed Internally Balanced Aileron from Tests of a 1/4-Scale Partial-Span Model of the Republic XF-12 Airplane in the Langley 19-Foot Pressure Tunnel

Description: This paper presents the results of the aileron investigation and includes rolling-moment, yawing-moment, and aileron hinge-moment coefficients and pressure coefficients across the aileron-balance seal through a range of angle of attack, tab deflection, and aileron deflection with flaps neutral and deflected 20 degrees and 55 degrees. Some of the effects of wing roughness and balance seal leakage on the aileron and tab characteristics are also presented.
Date: November 1, 1946
Creator: Graham, Robert R.; Martina, Albert P. & Salmi, Reino J.

An Estimation of the Flying Qualities of the Kaiser Fleetwing All-Wing Airplane from Tests of a 1/7-Scale Model, TED No. NACA 2340

Description: An investigation of a 1/7-scale powered model of the Kaiser Fleetwing all-wing airplane was made in the Langley full-scale tunnel to provide data for an estimation of the flying qualities of the airplane. The analysis of the stability and control characteristics of the airplane has been made as closely as possible in accordance with the requirements of the Bureau of Aeronautics, Navy Department's specifications, and a summary of the more significant conclusions is presented as follows. With the normal center of gravity located at 20 percent of the mean aerodynamic chord, the airplane will have adequate static longitudinal stability, elevator fixed, for all flight conditions except for low-power operation at low speeds where the stability will be about neutral. There will not be sufficient down-elevator deflection available for trim above speeds of about 130 miles per hour. It is probable that the reduction in the up-elevator deflections required for trim will be accompanied by reduced elevator hinge moments for low-power operation at low flight speeds. The static directional stability for this airplane will be low for all rudder-fixed or rudder-free flight conditions. The maximum rudder deflection of 30 deg will trim only about 15 deg yaw for most flight conditions and only 10 deg yaw for the condition with low power at low speeds. Also, at low powers and low speeds, it is estimated that the rudders will not trim the total adverse yaw resulting from an abrupt aileron roll using maximum aileron deflection. The airplane will meet the requirements for stability and control for asymmetric power operation with one outboard engine inoperative. The airplane would have no tendency for directional divergence but would probably be spirally unstable, with rudders fixed. The static lateral stability of the airplane will probably be about neutral for the high-speed flight conditions and will ...
Date: November 1946
Creator: Brewer, Gerald W.

Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms. IV - July 19, 1946 to July 20, 1946 at Orlando, Florida, Part 4, July 19, 1946 to July 20, 1946 at Orlando, Florida

Description: Summaries of the gust and draft velocities evaluated from acceleration and airspeed-altitude records taken by NACA instruments installed n P-61c airplanes participating in thunderstorm flights 12 and 13 of July 19, 1946, and July 20, 1946, respectively, are presented in tables I and II herein. These data are of the type presented in reference 1 for previous flights. Inspection of the motion picture records of the pilots' instrument panels for the present flights indicated that the milliameter connected to equipment for measuring ambient air temperature read zero throughout all traverses.
Date: November 1, 1946
Creator: Tolefson, H. B.

Effect of an Auxiliary Belly Fuel Tank on the Low-Speed Static Stability Characteristics of a 1/5-Scale Model of the Grumman XF8F-1 Airplane, TED No. NACA 2384

Description: In.order to determine the aerodynamic effects of an auxiliary belly fuel tank on the Grumman F8F-1 airplane, a wind-tunnel investigation was made on a l/5 - scale model of the Grumman XF8F-1 airplane. Pitch and yaw tests were made with the model in the cruising and landing configurations for windmilling and take-off power conditions. Tuft studies and static-pressure measurements were also made to determine the flow characteristics in the region of the fuel tank. It was found that, at low speed, the auxiliary fuel tank test conditions, especially with power on in the landing configuration at high lift coefficients. The static directional stability was decreased for most test conditions, but the addition of a fairing between the fuselage and fuel tank improved the directional stability slightly in the power-on clean condition. The effective dihedral and lateral force were increased for most of the conditions tested. The tuft studies and pressure measurements indicated that the removal of the away braces would improve the.flow characteristics considerably in the region of the fuel tank end might also decrease the buffeting of the belly tank at high speeds.
Date: November 5, 1946
Creator: Cook, Charles B.

Evaluation of Gust and Draft Velocities from Flights of P-61c Airplanes within Thunderstorms. II - July 9, 1946 to July 11, 1946 at Orlando, Florida, II, July 9, 1946 to July 11, 1946 at Orlando, Florida

Description: The results obtained from an evaluation for gust and draft velocities of acceleration and airspeed-altitude records taken by NACA recording instruments installed in P-61c airplanes participating in thunderstorm flights 6, 7, and 8 of July 9, 1946, July 10, 1946, and July 11, 1946, respectively, are presented herein. These data are summarized in tables I and II. In accordance with a recent discussion with a member of the U.S. Weather Bureau staff, the tabulated results for the present flight include in addition to data of the type presented in reference 1, the initial heading of the airplane for each traverse, the pressure altitude at the start of each traverse in increments of 500 feet, and the gust gradient distance when it could be evaluated. The cloud entry and exit times for the present data were taken from motion-picture records of the pilot's instrument panels whenever such records were available while the length fo the traverses in seconds and feet was taken from the airspeed-altitude records. In many cases, however, poor agreement is indicated between the duration of the cloud traverses as obtained from the motion-picture records and from the airspeed-altitude records. This result is believed to be due to camera stoppages, inaccurate spring mechanisms of the clocks, and loss of motion-picture record in exposure or development. With reference to the evaluation of gust data, the nominal threshold was about 2 feet per second. In making gust counts to this threshold, some gusts below that threshold have been included due to limitations of the procedure used. Thus, it will be noted that in some instances gust counts are given in table I although now corresponding gust velocities are listed.
Date: November 5, 1946
Creator: Tolefson, Harold B.

Evaluation of Gust and Draft Velocities from Flights of P-61c Airplanes within Thunderstorms. III - July 12, 1946 to July 18, 1946 at Orlando, Florida, Part 3, July 12, 1946 to July 18, 1946 at Orlando, Florida

Description: The gust and draft velocities evaluated from acceleration and airspeed-altitude records taken by NACA instruments installed in P-61c airplanes participating in thunderstorm flights 9, 10, and 11 of July 12, 1946, July 17, 1946, and July 18, 1946, respectively, are presented in references 1 and 2 for previous flights. In accordance with a recent discussion with a member of the U.S. Weather Bureau staff, motion-picture records of the pilots' instrument panels for the present flights were inspected to note variations in the readings of a milliammeter used in conjunction with other equipment to indicate ambient air temperature. The inspection indicated that the instrument read zero throughout all traverses.
Date: November 5, 1946
Creator: Tolefson, H. B.

Free-Spinning Tunnel Tests of a 1/20-Scale Model of the Chance Vought XF6U-1 Airplane, TED No. NACA 2390

Description: A spin investigation has been conducted in the Langley 20-foot free-spinning tunnel on a 1/20-scale model of the Chance Vought XF6U-1 airplane, The effects of control settings and movements upon the erect and inverted spin and recovery characteristics of the model were determined for the normal-fighter condition. The investigation also included tests for the take-off fighter condition (wing-tip tanks plus fuel added) spin-recovery parachutes, and simulated pilot escape. In general, for the normal-fighter condition, the model was extremely oscillatory in roll, pitch, and yaw. The angles of the fuselage varied from extremely flat to inverted attitudes, and the model rotated with the rudder in a series of short turns and glides. Recoveries by rudder reversal were rapid but the model would immediately go into a spin in the other direction. Recoveries by merely neutralizing the rudder were satisfactory when the elevator and ailerons were set to neutral, the ensuing flight path being a steep glide. Thus, it is recommended that all controls be neutralized for safe recovery from spins obtained on the airplane. With the external wing-tip tanks installed, the spins were somewhat less oscillatory in roll but recovery could not be obtained unless full-down elevator was used in conjunction with the rudder. If a spin is entered inadvertently with the full-scale airplane with external wing-tip tanks installed and if recovery is not imminent after a recovery attempt is made, it is recommended that the tanks be jettisoned and the controls neutralized.
Date: November 5, 1946
Creator: Klinar, Walter J.

Tank Tests of an Alternate Hull Form for the Consolidated Vultee PB2Y-3 Airplane

Description: Tests have been made in Langley tank no. I of a dynamic model of the Consolidated Vultee PB2Y-3 airplane. These tests were made using an alternate hull form, the purpose of which was to reduce the bow spray and eliminate the landing instability which are objectionable features of the production design. The major differences from the PB2Y-3 hull included a deeper step to improve the landing stability , and a lengthened forebody and increased beam to reduce the sway in the propellers and on the flaps. The tests showed that the spray characteristics of the revised hull form were much better than that ot the production design. In addition the take-off and landing stability of the model with the alternate hull were satisfactory.
Date: November 6, 1946
Creator: Land, Norman S. & Posner, Jack

An Investigation of the Icing and Heated-air De-icing Characteristics of the R-2600-13 Induction System

Description: A laboratory investigation was made on a Holley 1685-HB carburetor mounted on an R-2600-13 supercharger assembly to determine the icing characteristics and the heated-air de-icing requirements of this portion of the B-25D airplane induction system. Icing has been found to be most prevalent at relatively small throttle openings and, consequently, all runs were made at simulated 60-percent normal rated power condition. Icing characteristics were determined during a series of 15-minute runs over a range of inlet-air conditions. For the de-icing investigation severe impact ice was allowed to form in the induction system and the time required for the recovery of 95 percent of the maximum possible air flow at the original throttle setting was then determined for a range of wet-bulb temperatures. Results of these runs showed that ice on the walls of the carburetor adapter and on the rim of the impeller-shroud portion of the supercharger diffuser plate did not affect engine operation at 60-percent normal rated power. Ice that adversely affected the air flow and the fuel-air ratio was formed only on the central web of the carburetor and then only when the inlet air was saturated or contained free moisture in excess of saturation. No serious ice formations were observed at inlet-air temperatures above 66 0 F or with an inlet-air enthalpy greater than 34 Btu per pound. The maximum temperature at. which any trace of icing could be detected was 1110 F with a relative humidity of approximately 28 percent, The air-flow recovery time for emergency de-icing was 0.3 minute for.an enthalpy of 35 Btu per pound or wet-bulb temperature of 68 0 F. Further increase in enthalpy and wet-bulb temperature above these values resulted in very slight improvement in recovery time. The fuel-air ratio restored by a 5-Minute application of heated air was approximately 7 ...
Date: November 11, 1946
Creator: Chapman, Gilbert E.