UNT Libraries Government Documents Department - 5,163 Matching Results

Search Results

Investigation of the Characteristics of a High-Aspect-Ratio Wing in the Langley 8-Foot High-Speed Tunnel

Description: An investigation of the characteristics of a wing with an aspect ratio of 9.0 and an NACA 65-210 airfoil section has been made at Mach number up to 0.925. The wing tested has a taper ratio of 2.5:1.0, no twist, dihedral, or sweepback, and 20-percent - chord 37.5-percent-semispan plain ailerons. The results showed that serious changes in the normal-force characteristics occurred when the Mach number was increased above 0.74 at angles of attack between 4 deg. and 10 deg. and above 0.80 at 0 deg. angle of attack.Because of small outboard shifts in the lateral center of load, the bending moment at the root for conditions corresponding to a 3g pull-out at an altitude of 35,000 feet increased by approximately 5% when the Much number was increased beyond 0.83 the negative pitching moments for the high angles of attack increased, whereas those for the low angles of attack decreased with a resulting large increase in the negative slope of the pitching-moment curves. A large increase occurred in the values of the drag coefficients for the range of lift coefficients needed for level flight at an altitude of 35,000 feet when the Mach number was increased beyond a value of 0.80. The wakes at a station 2.82 root chords behind the wing quarter-chord line extended approximately a chord above the wing chord line for the angles of attack required to recover from high-speed dives at high Mach numbers.
Date: August 28, 1940
Creator: Whitcomb, Richard T.

Effect of Rivet Holes on the Ultimate Strength Developed by 24S-T and Alclad 75S-T Sheet in Incomplete Diagonal Tension

Description: Strength tests were made of a number of 24S-T and Alclad 75S-T aluminum-alloy shear webs to determine the effect of rivet or bolt holes on the shear strength. Data were obtained for webs which approached a condition of pure shear stress as well as for webs with well-developed diagonal tension. The rivet factor, (pitch minus diameter) divided by pitch, was varied from approximately 0.81 to 0.62. These tests indicated that the shear stresses on the gross section were nearly constant for all values of the rivet factor investigated if the other properties of the web were not changed.
Date: 1943
Creator: Levin, L. Ross & Nelson, David H.

Flight Measurements of Lateral and Directional Stability and Control Characteristics of the Grumman F8F-1 Airplane

Description: This paper presents the results of flight tests to determine the lateral and directional stability and control characteristics of the Grumman F8F-1 airplane with three vertical-tail configurations. The data presented herein have no bearing on the performance characteristics of the airplane, which were not measured but which were considered to be exceptionally good. The conclusions reached regarding the lateral and directional stability and control characteristics may be summarized as follows: 1. It was found that the directional stability was poor with the production vertical tail. Addition of a 12-inch extension to the vertical fin and rudder produced a desirable improvement in directional stability and control characteristics. However, further enlargement of the vertical tail would be required to make the directional stability satisfactory in all respects. 2. There was a tendency for the rudder control force to overbalance at large angles of right sideslip with the modified vertical tails. There was no such tendency with the production tail configuration which included a dorsal fin. It was concluded that the dorsal fin should have been retained on the modified vertical tails. 3. The aileron control characteristics were better than those of many comparable airplanes which have been tested. However, the ailerons did not satisfy the Navy requirements for satisfactory flying qualities with regard to either control forces or rolling effectiveness. 4. The power of the rudder trimming tab proved to be inadequate and the tab should be enlarged and/or be provided with an increased deflection range.
Date: January 1945
Creator: Crane, H. L. & Reeder, J. P.

Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms August 21, 1946 to August 22, 1946 at Orlando, Florida

Description: Tables I and II of this report summarize the gust and draft velocity data for thunderstorm flights 25 and 26 of August 21, 1946 and August 22, 1946, respectively. These dta were evaluated from records of NACA instruments installed in P-61C airplanes and are of the type presented in reference 1 for previous flights. Table III summarizes the readings of a milliammeter which was used in conjunction with other equipment to indicate ambient air temperature during thunderstorm surveys. These data were read from motion-picture records of the instrument and include all cases in which variations in the instrument indications were noted during the present flights.
Date: January 1, 1946
Creator: Tolefson, H. B.

Flight-Test Evaluation of the Longitudinal Stability and Control Characteristics of 0.5-Scale Models of the Fairchild Lark Pilotless-Aircraft Configuration. Model with Wing Flaps Deflected 15 Degrees, TED No. NACA 2387

Description: A flight test was conducted at the Flight Test Station of the Pilotless Aircraft Research Division at Wallops Island, Va., to determine the longitudinal control and stability characteristics of a 0.5-scale model of the Fairchild Lerk Pilotless aircraft with the horizontal wing flaps deflected 15 degrees. The data were obtained by the use of a telemeter and also by radar tracking. The results show an increase of effectiveness of the longitudinal control in producing normal accelerations up to a Mach number of 0.75 where this effectiveness gradually decreased becoming negative at a Mach number of 0.89. Previous tests with wing flaps undeflected an increase in effectiveness up to Mach number of 0.93 where a sudden loss of control occurred. The model was dynamically stable throughout the speed range. The data confirmed the drag increase at the critical Mach number for large angles of attack is indicated in high-speed wind-tunnel tests.
Date: January 1946
Creator: Stone, David G.

Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms: August 23, 1946 to September 4, 1946 at Orlando, Florida

Description: This report presents the results obtained from gust and draft velocity measurements within thunderstorms for the period August 23, 1946 to September 4, 1946 at Orlando, Florida. These data are summarized in tables I end II and are of the type presented in reference 1 for previous flights. In several of the surveys, indications of ambient air temperature were obtained from photo-observer records. These data are summarized in table III.
Date: January 30, 1946
Creator: Tolefson, H. B.

Investigation of Dive Brakes and a Dive-Recovery Flap on a High-Aspect-Ratio Wing in the Langley 8-Foot High-Speed Tunnel

Description: The results of tests made to determine the aerodynamic characteristics of a solid brake, a slotted brake, and a dive-recovery flap mounted on a high aspect ratio wing at high Mach numbers are presented. The data were obtained in the Langley 8-foot high-speed tunnel for corrected Mach numbers up to 0.940. The results have been analyzed with regard to the suitability of dive-control devices for a proposed high-speed airplane in limiting the airplane terminal Mach number by the use of dive brakes and in achieving favorable dive-recovery characteristics by the use of a dive-recovery flap. The analysis of the results indicated that the slotted brake would limit the proposed airplane terminal Mach number to values below 0.880 for altitudes up to 35,000 feet and a wing loading of 80 pounds per square foot and the dive-recovery flap would produce trim changes required for controlled pull-outs at 25,000 feet for a Mach number range from 0.800 to 0.900. Basic changes in spanwise loading are presented to aid in the evaluation of the wing strength requirements.
Date: August 28, 1946
Creator: Mattson, Axel T.

Flight Investigation of the Knock-Limited Performance of a Triptane Blend, a Toluene Blend, and 28-R Fuel in an R-1830-75 Engine

Description: Knock-limited performance data were obtained for three fuels on an R-1830-75 engine in a B-24D airplane at engine speeds of 1800, 2250, and 2600 rpm, a spark advance of 25 degrees B.T.C., and carburetor-air temperatures of 85 F for 1800 and 2250 rpm and 100 F for 2600 rpm. The test fuels were a blend of 80 percent 28-R plus 20 percent triptane (leaded to 4.5 ml TEL/gal), a blend of 80 percent 28-R plus 15 percent toluene (leaded to 4.5 ml TEL / gal), and 28-R fuel. The knock-limited manifold pressure of the toluene blend depreciated more in the lean region than the triptane blend or 28-R fuel. The knock-limited brake horsepower for the triptane blend varied from 16 to 25 percent higher than 28-R in the lean region and 18 to 30 percent higher in the rich region. The knock-limited brake horsepower of the toluene blend was approximately 15 percent higher than that of 28-R in the rich region and varied from 2 to 10 percent higher in the lean region. Knock limits of the triptane blend and 28-R fuel tested in the R-1830-75 engine agreed with limits for the same fuels determined with the R-1830-94 engine for engine speeds of 1800 and 2250 rpm.
Date: September 3, 1946
Creator: Blackman, Calvin C.

Altitude-Wind-Tunnel Investigation of Oil-System Performance of XR-4360-8 Engine in XTB2D-1 Airplane

Description: An investigation was conducted in the Cleveland altitude wind tunnel to determine the aerodynamic characteristics and the oil delivery critical altitude of the oil-cooler installation of an XTB2D-1 airplane. The investigation was made with the propeller removed end with the engine operating at 1800 brake horsepower, an altitude of 15,000 feet (except for tests of oil-delivery critical altitude), oil-cooler flap deflections from -20 degrees to 20 degrees and inclinations of the thrust axis of 0 degrees, 1.5 degrees, and 6 degrees. At an inclination of the thrust axis of 0 degrees and with the propeller operating, the total-pressure recovery coefficient at the face of the oil cooler varied from 0.84 to 1.10 depending on the flap deflection. With the propeller removed, the best pressure recovery at the face of the oil cooler was obtained at an inclination of the thrust axis of 1.5 degrees. Air-flow separation occurred on the inner surface of the upper lip of the oil-cooler duct inlet at an inclination of the thrust axis of 0 degrees and on the inner surface of the lower lip at 6 degrees. Static pressure coefficients over the duct lips were sufficiently low that no trouble from compressibility would be encountered in level flight. The oil-delivery critical altitude at cruising power (2230 rpm, 1675 bhp) was approximately 18,500 feet for the oil system tested.
Date: September 4, 1946
Creator: Conrad, E. William

Investigation of Three Design Modifications of the NACA Injection Impeller in an R-3350 Engine

Description: An investigation was conducted to determine the effects of three design modifications of the original NACA injection impeller on the performance of an R-3350 engine. Different methods of injecting the fuel into the impeller air stream were studied and evaluated from the individual cylinder fuel-air ratios and the resulting cylinder temperatures. Each impeller was tested for a range of engine powers normally used in flight operation. The relatively simple design of the original injection impeller produced approximately the same mixture- and temperature-distribution characteristics as the modified impellers of more complex design. None of the modifications appreciably affected the manifold pressure, the combustion-air flow, nor the throttle angle required to maintain a given engine power,.
Date: September 9, 1946
Creator: Hickel, Robert O. & Michel, Donald J.

Wind-Tunnel Tests to Determine Aileron Characteristics of the McDonnell XFD-1 Airplane, TED No. NACA 23102

Description: Tests were performed on a partial span of the wing of a McDonnell XFD-1 airplane to determine a combination of sealed internal balance and spring-tab stiffness for the aileron that would give satisfactory stick-force characteristics for the airplane. Two sealed internal balances were tested in combination with spring tabs of various stiffnesses. One of the combinations was tested at several speeds to determine the variation of stick force with speed. Estimates, based on the results of the tests, indicate that for this airplane any reduction of stick force by use of the spring tab reduces the helix angle pb/2V below the required value of 0.09. The estimates show that, of the configurations tested, the most satisfactory combination for obtaining a stick force of 30 pounds at 300 miles per hour indicated airspeed is a 0.48-chord internal balance in combination with a spring-tab stiffness of 500 pounds per inch. With this combination, a wing-tip helix angle of 0.078 is estimated. Stick-force curves for all configurations show a rapid increase in stick force above approximately 20 deg. total aileron deflection.
Date: September 26, 1946
Creator: Yates, Campbell C. & Schneiter, Leslie E.

Free-Spinning-Tunnel Tests of a 1/18-Scale Model of the Fairchild XNQ-1 Airplane, TED No. NACA 2398

Description: Spin tests have been performed in the Langley 20-foot free-spinning tunnel on a 1/18-scale model of the Fairchild XNQ-1 airplane. The spin and recovery characteristics of the model were determined for the normal gross-weight loading and for two variations from this loading - center of gravity moved rearward and relative mass distribution increased along the fuselage. These tests were performed for two vertical-tail plan forms. The investigation also included simulated pilot-escape tests and rudder-force tests. The recovery characteristics of the model were satisfactory for all conditions tested by full reversal of the rudder and by simultaneous neutralization of the rudder and elevator. It was indicated that if necessary to escape from the spinning airplane, the pilot should jump from the outboard side of the fuselage and as far rearward as possible. Aa determined from spin model tests, the rudder pedal force required to reverse the rudder for recovery from the spin will be light.
Date: September 30, 1946
Creator: Daughtridge, Lee T., Jr.

Flight Investigation of Effect of Various Vertical-Tail Modifications on the Directional Stability and Control Characteristics of the P-63A-1 Airplane (AAF No. 42-68889)

Description: Because the results of preliminary flight tests had indicated. the P-63A-1 airplane possessed insufficient directional stability, the NACA and the manufacturer (Bell Aircraft Corporation) suggested three vertical-tail modifications to remedy the deficiencies in the directional characteristics. These modifications included an enlarged vertical tail formed by adding a tip extension to the original vertical tail, a large sharp-edge ventral fin, and a small dorsal fin. The enlarged vertical tail involved only a slight increase in total vertical-tail area from 23.73 to 26.58 square feet but a relatively much larger increase in geometric aspect ratio from 1.24 to 1.73 based on height and area above the horizontal tail. At the request of the Air Material Command, Army Air Forces, flight tests were made to determine the effect of these modifications and of some combinations of these modifications on the directional stability and control characteristics of the airplane, In all, six different vertical-tail. configurations were investigated to determine the lateral and directional oscillation characteristics of the airplane, the sideslip characteristics, the yaw due to ailerons in rudder-fixed rolls from turns and pull-outs, the trim changes due to speed changes; and the trim changes due to power changes. Results of the tests showed that the enlarged vertical tail approximately doubled the directional stability of the airplane and that the pilots considered the directional stability provided by the enlarged vertical tail to be satisfactory. Calculations based on sideslip data obtained at an indicated airspeed of 300 miles per hour showed that the directional stability of the airplane with the original vertical tail corresponded to a value of 0(sub n beta) of -0.00056 whereas for the enlarged vertical tail the estimated va1ue of C(sub n beta) was -0.00130, The ventral fin was found to increase by a moderate amount the directional stability of the airplane with ...
Date: October 7, 1946
Creator: Johnson, Harold I.

Flight and test-stand investigation of high-performance fuels in Pratt & Whitney R-1830-94 engines IV : comparison of cooling characteristics of flight and test-stand engines

Description: The cooling characteristics of three R-1830-94 engines, two of which were mounted in a test stand and the other in a B-24D airplane, were investigated and the results were compared. The flight tests were made at a pressure altitude of 7000 feet; the test-stand runs were made at ground-level atmospheric conditions. Three cooling runs were made for each engine: variable cooling-air pressure drop, variable carburetor-air flow, and variable fuel-air ratio. Actual cylinder temperatures of the three engines at nearly the same operating conditions of charge-air flow, fuel-air ratio, and cooling-air pressure drop paralleled predicted temperatures for the same conditions. This result was found to be true for a limited period of engine running time, this period coinciding with the time during which the cooling-correlation data were taken.
Date: October 8, 1946
Creator: Werner, Milton & Dandois, Marcel

Altitude cooling investigation of the R-2800-21 engine in the P-47G airplane II : investigation of the engine & airplane variables affecting the cylinder temperature distribution

Description: The data obtained from cooling tests of an R-2800-21 engine installed in a p-47G airplane were studied to determine which engine and airplane operation variables were mainly responsible for the extremely uneven temperature distribution among the 18 engine cylinders obtained at the medium and high engine-power conditions. The tests consisted of flights at altitudes from 5000 to 35,000 feet for the normal range of engine and airplane operation. The results of the study showed that a flow condition in the induction system associated with the wide-open throttle position, which affected either the fuel air or charge distribution, was primarily responsible for the uneven temperature distribution. For the range of fuel-air ratios tested (0.080 to 0.102), the temperature distribution remained essentially unchanged. The individual effects of thrust-axis inclination, cowl-flap opening, and quantity of auxiliary air were found to be secondary in importance. At low angles of throttle opening, engine speed was found to have little effect on the temperature pattern.
Date: October 9, 1946
Creator: Pesman, Gerard J & Kaufman, Samuel J

Altitude cooling investigation of the R-2800-21 engine in the P-47g airplane III : individual-cylinder temperature reduction by means of intake-pipe throttle and by coolant injection

Description: Flight tests were conducted on a R-2800-21 engine in the P-47G airplane to determine the effect on the wall temperatures of cylinder 10 of throttling the charge in the intake pipe and of injecting a water-ethanol coolant into the intake pipe. Cylinder 10 was chosen for this investigation because it runs abnormally hot (head temperatures of the order of 45 F higher than those of the next hottest cylinder) at the medium and high-power conditions. Tests with interchanged cylinders showed that the excessive temperatures of cylinder 10 were inherent in the cylinder location and were not due to the mechanical condition of the cylinder assembly. Throttling the charge in the intake pipe is a simpler method than coolant injection into the intake pipe particularly when only one cylinder is considerably hotter than any other. Coolant injection into the individual cylinders is a more efficient method than throttling in the intake pipe and is warranted when several cylinders are to be cooled or when parts of the complex equipment required are already available.
Date: October 9, 1946
Creator: Bell, E Barton; Valerino, Michael F & Manganiello, Eugene J

Altitude-Wind-Tunnel Investigation of Performance of Several Propellers on YP-47M Airplane at High Blade Loading, 1, Aeroproducts H20C-162-X11M2 Four-Blade Propeller

Description: An investigation was made in the Cleveland Altitude wind tunnel to determine the performance of an Aeroproducts H20C-162-X11M2 four-blade propeller on a YP-47M airplane at high blade loadings and high engine powers. The propeller characteristics were obtained for a range of power coefficients from 0.30 to 1.00 at free-stream Mach numbers of 0.40 and 0.50. The results of the force measurements are indicative only of trends in propeller efficiency with changes in power coefficient and advance-diameter ratio because unknown interference effects existed during the investigation. At a free-stream Mach number of 0.40, the envelopes of the efficiency curves decreased about 11% between advance-diameter ratios of 2.40 and 4.40. An increase in power coefficient from 0.30 to 0.80 at an advance-diameter ratio of 2.40 had little effect on the propeller efficiency. A change in power coefficient from 0.40 to 1.00 at an advance-diameter ratio of 4.40 increased the propeller efficiency by about 40%. For conditions below the stall the thrust loading on the outboard blade sections increased more rapidly than on the inboard sections as the power coefficient was increased or as the advance-diameter ratio was decreased. For conditions beyond the stall, the thrust loading decreased on the outboard sections and increased on the inboard sections.
Date: October 11, 1946
Creator: Saari, Martin J. & Wallner, Lewis E.

Langley Full-Scale Tunnel Investigation of a 1/3-Scale Model of the Chance Vought XF5U-1 Airplane

Description: The results of an investigation of a 1/3-scale model of the Chance Vought XF5U-1 airplane in the Langley full-scale tunnel are presented in this report. The maximum lift and stalling characteristics of several model configurations, the longitudinal stability characteristics of the model, and the effectiveness of the control surfaces were determined with the propellers removed. The propulsive characteristics, the effect of propeller operation on the lift, and the static thrust of the model propellers were determined at several propeller-blade angles. The results with the propellers removed showed that the maximum lift coefficient of the complete model configuration was only 0.97 was compared with the value of 1.31 for the model configuration in which the engine-air ducts and canopy are removed. The model with the propellers removed (normal center-of-gravity position) has a positive static margin, stick fixed, varying from 5 to 13 percent of the mean aerodynamic chord throughout the unstalled range of lift coefficients. The unit horizontal tail is sufficiently powerful to trim the airplane with the propellers removed throughout the unstalled range of lift coefficients. The peak propulsive efficiencies for beta = 20 degrees and beta = 30 degrees were increased 7 percent at C(sub L) congruent to 0.67 and 20 percent at C(sub L) congruent to 0.74, respectively, with the propellers rotating upward in the center than with the propellers rotating downward in the center. Indications are that the minimum forward-flight speed of the airplane for full-power operation at sea level will be about 90 miles per hour. Decreasing the weight and increasing the power reduced this value of minimum speed and there were no indications from the results of a lower limit to the minimum speed.
Date: October 11, 1946
Creator: Lange, Roy H.; Cocke, Bennie W., Jr. & Proterra, Anthony J.

Waters Loads on the XJL-1 Hull as Obtained in Langley Impact Basin, TED No. NACA 2413.3

Description: An investigation was conducted in the Langley impact basin of the water loads on a half scale model of the XJL-1 hull whose forebody has a vee bottom with exaggerated chine flare. The impact loads, moments, and pressures were determined for a range of landing conditions. A normal full-scale landing speed of 86 miles per hour was represented with effective flight paths ranging from 0.6deg to 11.6deg. Landings were made with both fixed trim and free-to-trim mounting of the float over a trim range of -15deg to 12deg into smooth water and into waves having equivalent full-scale length. of 120 feet and heights ranging from 1 to 4 feet. All data and results presented in this report are given in terms of equivalent full-scale values. Summary tables and illustrative plots are used in presenting the material. The following maximum values of load and pressure are those which are apropos for effective flight paths less than 6.5deg which was the maximum value obtained in tests with the XJL-1 hull model representing full-scale landings with vertical velocity of 4.5 feet per second into 4-foot waves. The maximum local pressure on the flat portion of the bottom is 130 pounds per square inch which was measured on a 2-inch-diameter circular area near the step. The maximum local pressure obtained in the curved area near the chines is 200 pounds per square inch. This pressure was also measured near the step.
Date: October 11, 1946
Creator: Steiner, Margaret F. & Miller, Robert W.

Preliminary Tests of a Buffet Stall-Warning Device on a 1/5-Scale Model of the Republic XP-84 Airplane

Description: During the first flight tests of the Republic XP-84 airplane it was discovered that there was a complete lack of stall warning. A short series of development tests of a suitable stall-warning device for the airplane was therefore made on a 1/5-scale model in the Langley 300 MPH 7- by 10-foot tunnel. Two similar stall-warning devices, each designed to produce early root stall which would provide a buffet warning, were tested. It appeared that either device would give a satisfactory buffet warning in the flap-up configuration, at the cost of an increase of 8 or 10 miles per hour in minimum speed. Although neither device seemed to give a true buffet warning in the flaps-down configuration, it appeared that either device would improve the flaps-down stalling characteristics by lessening the severity of the stall and by maintaining better control at the stall. The flaps-down minimum-speed increase caused by the devices was only 1 or 2 miles per hour.
Date: October 30, 1946
Creator: Tucker, Warren A. & Comisarow, Paul