UNT Libraries Government Documents Department - 279,188 Matching Results

Search Results

Scaled Experimental Modeling of VHTR Plenum Flows

Description: Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.
Date: April 1, 2007
Creator: 15, ICONE

PRELIMINARY DESIGN AND HAZARDS REPORT BOILING REACTOR EXPERIMENT V (BORAX V)

Description: gram are to test nuclear superheating concepts and to advance the technology of boiling-water-reactor design by performing experiments which will improve the understanding of factors limiting the stability of boiling reactors at high power densities. The reactor vessel is a cylinder with ellipsoidal heads, made of carbon steel clad internally with stainless steel. Each of the three cores is 24 in. high and has an effective diameter of 39 in. (W.D.M.)
Date: February 1, 1960
Creator: 1960, Feb.

Reduction of pertechnetate by acetohydroxamic acid: Formation of [TcNO(AHA)2(H2O)]+ and implications for the UREX process.

Description: Reductive nitrosylation and complexation of ammonium pertechnetate by acetohydroxamic acid has been achieved in aqueous nitric and perchloric acid solutions. The kinetics of the reaction depend on the relative concentrations of the reaction components and are accelerated at higher temperatures. The reaction does not occur unless conditions are acidic. Analysis of the x-ray absorption fine structure spectroscopic data is consistent with a pseudo-octahedral geometry with the linear Tc-N-O bond typical of technetium nitrosyl compounds, and electron spin resonance spectroscopy is consistent with a the d{sup 5} Tc(II) nitrosyl complex. The nitrosyl source is generally AHA, but may be augmented by products of reaction with nitric acid. The resulting low-valency trans-aquonitrosyl(diacetohydroxamic)-technetium(II) complex (1) is highly soluble in water, extremely hydrophilic, and is not extracted by tri-n-butylphosphate in a dodecane diluent. Its extraction properties are not pH-dependent; titration studies indicate a single species from pH 4.5 down to -0.6 (calculated). This molecule is resistant to oxidation by H{sub 2}O{sub 2}, even at high pH, and can undergo substitution to form other technetium nitrosyl complexes. The formation of 1 may strongly impact the fate of technetium in the nuclear fuel cycle.
Date: February 26, 2008
Creator: 1Harry Reid Center for Environmental Studies, Nuclear Science and Technology Division, University of Nevada, Las Vegas, Las Vegas, NV, 89154-4006; Gong, Cynthia-May S; Poineau, Frederic; Lukens, Wayne W & Czerwinski, Kenneth R.

HIGH PERFORMANCE STATIONARY DISCHARGES IN THE DIII-D TOKAMAK

Description: Recent experiments in the DIII-D tokamak [J.L. Luxon, Nucl. Fusion 42,614 (2002)] have demonstrated high {beta} with good confinement quality under stationary conditions. Two classes of stationary discharges are observed--low q{sub 95} discharges with sawteeth and higher q{sub 95} without sawteeth. The discharges are deemed stationary when the plasma conditions are maintained for times greater than the current profile relaxation time. In both cases the normalized fusion performance ({beta}{sub N}H{sub 89P}/q{sub 95}{sup 2}) reaches or exceeds the value of this parameter projected for Q{sub fus} = 10 in the International Thermonuclear Experimental Reactor (ITER) design [R. Aymar, et al., Plasma Phys. Control. Fusion 44, 519 (2002)]. The presence of sawteeth reduces the maximum achievable normalized {beta}, while confinement quality (confinement time relative to scalings) is largely independent of q{sub 95}. Even with the reduced {beta} limit, the normalized fusion performance maximizes at the lowest q{sub 95}. Projections to burning plasma conditions are discussed, including the methodology of the projection and the key physics issues which still require investigation.
Date: October 1, 2003
Creator: 45th ANNUAL MEETING OF DIVISION OF PLASMA PHYSICS, ALBUQUERQUE, NEW MEXICO, OCTOBER 27-31,2003 AND TO BE PUBLISHED IN PHYS. PLASMAS.

TECHNOLOGY MATURATION OF DISPERSION TECHNOLOGY TO AUGMENT BIOREMEDIATION

Description: The data obtained from this preliminary short-term project demonstrated that dispersants such as 54GO are effective in accelerating the bio-remediation of soils containing contamination from waste oils, diesel, creosote and manufactured gas plant waste. This acceleration appears to be in the observation that 54GO quickly separates the hydrocarbon wastes from the soil particles, thereby allowing closer contact with the microbes. The project time limitations impacted the scope of data but was able to demonstrate a general reduction in the levels of contaminates. In this project only Total Petroleum Hydrocarbons [TPH] and 17 polycyclic aromatic hydrocarbons [PAH] were analyzed. These were chosen because they are standardized by EPA methodology. The raw data from these analytical methods indicate that there are many more intermediate metabolizes from the bio-remediation process that were not identified or measured [a limitation of the 17 analyte EPA Method 8270 protocol]. The limited data from these bio-reactors indicates that when both 54GO [dispersant] and stress selected microbes are used the reduction of contaminate metabolizes is the greatest. The use of microbes alone was also effective, but not consistent and to a lesser degree. An additional observation with 54GO, either alone or with microbes is that significant amounts of hydrocarbons were extracted or released from the test soils and became a separate phase floating on the surface of these bio-reactors. The levels of floating oil in these bio-reactors made mixing and sampling difficult tasks. This latter effect of, 54GO, indicates that this family of dispersants are excellent candidates for classic soil washing techniques and may be better served by pre-treating waste soils before mixing with microbes. It is estimated that 75% or more of the hydrocarbons were in the oil phase in these bio-reactors even in low water conditions [saturated soil].
Date: July 1, 2000
Creator: 54GO, J. NEELY -

Arctic Energy Technology Development Laboratory (Part 2)

Description: Methane (CH{sub 4}) in natural gas is a major energy source in the U.S., and is used extensively on Alaska's North Slope, including the oilfields in Prudhoe Bay, the community of Barrow, and the National Petroleum Reserve, Alaska (NPRA). Smaller villages, however, are dependent on imported diesel fuel for both power and heating, resulting in some of the highest energy costs in the U.S. and crippling local economies. Numerous CH{sub 4} gas seeps have been observed on wetlands near Atqasuk, Alaska (in the NPRA), and initial measurements have indicated flow rates of 3,000-5,000 ft{sup 3} day{sup -1} (60-100 kg CH{sub 4} day{sup -1}). Gas samples collected in 1996 indicated biogenic origin, although more recent sampling indicated a mixture of biogenic and thermogenic gas. In this study, we (1) quantified the amount of CH{sub 4} generated by several seeps and evaluated their potential use as an unconventional gas source for the village of Atqasuk; (2) collected gas and analyzed its composition from multiple seeps several miles apart to see if the source is the same, or if gas is being generated locally from isolated biogenic sources; and (3) assessed the potential magnitude of natural CH{sub 4} gas seeps for future use in climate change modeling.
Date: December 31, 2008
Creator: 960443, See OSTI ID Number

Arctic Energy Technology Development Laboratory (Part 3)

Description: Various laboratory tests were carried at the R & D facility of BJ Services in Tomball, TX with BJ Services staff to predict and evaluate the performance of the Ceramicrete slurry for its effective use in permafrost cementing operations. Although other standards such as those of the American Standard for Testing Materials (ASTM) and Construction Specification Institute (CSI) exist, all these tests were standardized by the API. A summary of the tests traditionally used in the cement slurry design as well as the API tests reference document are provided in Table 7. All of these tests were performed within the scope of this research to evaluate properties of the Ceramicrete.
Date: December 31, 2008
Creator: 960443, See OSTI ID Number

Optimization of the Configuration of Pixilated Detectors Based on the Sgabbib-Nyquist Theory for the X-ray Spectroscopy of Hot Tokamak Plasmas

Description: This paper describes an optimization of the detector configuration, based on the Shannon-Nyquist theory, for two major x-ray diagnostic systems on tokamaks and stellarators: x-ray imaging crystal spectrometers and x-ray pinhole cameras. Typically, the spectral data recorded with pixilated detectors are oversampled, meaning that the same spectral information could be obtained using fewer pixels. Using experimental data from Alcator C-Mod, we quantify the degree of oversampling and propose alternate uses for the redundant pixels for additional diagnostic applications.
Date: August 9, 2012
Creator: : E. Wang, P. Beiersdorfer, M. Bitter, L.F. Delgado-Apricio, K.W. Hill and N. Pablant

Local Effects of Biased Electrodes in the Divertor of NSTX

Description: The goal of this paper is to characterize the effects of small non-axisymmetric divertor plate electrodes on the local scrape-off layer plasma. Four small rectangular electrodes were installed into the outer divertor plates of NSTX. When the electrodes were located near the outer divertor strike point and biased positively, there was an increase in the nearby probe currents and probe potentials and an increase in the LiI light emission at the large major radius end of these electrodes. When an electrode located farther outward from the outer divertor strike point was biased positively, there was sometimes a significant decrease in the LiI light emission at the small major radius end of this electrode, but there were no clear effects on the nearby probes. No non-local effects were observed with the biasing of these electrodes.
Date: May 7, 2012
Creator: : S. Zweben, M.D. Campanell, B.C. Lyons, R.J. Maqueda, Y. Raitses, A.L. Roquemore and F. Scotti

Focal Plane Metrology for the LSST Camera

Description: Meeting the science goals for the Large Synoptic Survey Telescope (LSST) translates into a demanding set of imaging performance requirements for the optical system over a wide (3.5{sup o}) field of view. In turn, meeting those imaging requirements necessitates maintaining precise control of the focal plane surface (10 {micro}m P-V) over the entire field of view (640 mm diameter) at the operating temperature (T {approx} -100 C) and over the operational elevation angle range. We briefly describe the hierarchical design approach for the LSST Camera focal plane and the baseline design for assembling the flat focal plane at room temperature. Preliminary results of gravity load and thermal distortion calculations are provided, and early metrological verification of candidate materials under cold thermal conditions are presented. A detailed, generalized method for stitching together sparse metrology data originating from differential, non-contact metrological data acquisition spanning multiple (non-continuous) sensor surfaces making up the focal plane, is described and demonstrated. Finally, we describe some in situ alignment verification alternatives, some of which may be integrated into the camera's focal plane.
Date: January 10, 2007
Creator: A Rasmussen, Andrew P.; Hale, Layton; Kim, Peter; Lee, Eric; Perl, Martin; Schindler, Rafe et al.

IN-VIVO DIAGNOSIS OF CHEMICALLY INDUCED MELANOMA IN AN ANIMAL MODEL USING UV-VISIBLE AND NIR ELASTIC SCATTERING SPECTROSCOPY: PRELIMINARY TESTING.

Description: Elastic light scattering spectroscopy (ESS) has the potential to provide spectra that contain both morphological and chromophore information from tissue. We report on a preliminary study of this technique, with the hope of developing a method for diagnosis of highly-pigmented skin lesions, commonly associated with skin cancer. Four opossums were treated with dimethylbenz(a)anthracene to induce both malignant melanoma and benign pigmented lesions. Skin lesions were examined in vivo using both UV-visible and near infrared (NIR) ESS, with wavelength ranges of 330-900 nm and 900-1700 nm, respectively. Both portable systems used identical fiber-optic probe geometry throughout all of the measurements. The core diameters for illuminating and collecting fibers were 400 and 200 {micro}m, respectively, with center-to-center separation of 350 {micro}m. The probe was placed in optical contact with the tissue under investigation. Biopsies from lesions were analyzed by two standard histopathological procedures. Taking into account only the biopsied lesions, UV-visible ESS showed distinct spectral correlation for 11/13 lesions. The NIR-ESS correlated well with 12/13 lesions correctly. The results of these experiments showed that UV-visible and NIR-ESS have the potential to classify benign and malignant skin lesions, with encouraging agreement to that provided by standard histopathological examination. These initial results show potential for ESS based diagnosis of pigmented skin lesions, but further trials are required in order to substantiate the technique.
Date: January 1, 2001
Creator: A'AMAR, C.; LEY, R. & AL, ET

Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Processing

Description: The stability of tungsten carbide particles in iron-rich and nickel-rich liquid during the laser surface alloying (LSA) process was investigated. Kinetic calculations indicate a rapid dissolution of tungsten carbide particles in iron-rich liquid, as compared with the dissolution rate in nickel-rich liquid. Optical microscopy indicated a heterogeneous microstructure around the tungsten particles that is in agreement with concentration gradients predicted by kinetic calculation. The work demonstrates the applicability of computational thermodynamics and kinetic models for the LSA process.
Date: April 1, 2002
Creator: A, Babu S S Martukanitz R P Parks K D David S

Coupled Hydrodynamic-Structural Response Analysis of Piping Systems

Description: This report describes in detail the expansion of the ICEPEL code for the coupled hydrodynamic-structural response analysis of pipe-elbow loops to general piping systems. A generalized piping-component model, a branching tce junction, and a surge-tank model are introduced and coupled with the pipe-elbow loop model so that a general piping system under the effect of internally traveling pressure pulses can be analyzed hydrodynamically, as well as structurally.
Date: 1978?
Creator: A-Moneim, M. T.

Nuclear physics with a medium-energy Electron-Ion Collider

Description: A polarized ep/eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy {radical}s {approx} 20-70 GeV and a luminosity {approx}10{sup 34} cm{sup -2} s{sup -1} would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: (i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); (ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); (iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12 GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.
Date: June 1, 2012
Creator: A. Accardi, V. Guzey, A. Prokudin, C. Weiss

Raising Photoemission Efficiency with Surface Acoustic Waves

Description: We are developing a novel technique that may help increase the efficiency and reduce costs of photoelectron sources used at electron accelerators. The technique is based on the use of Surface Acoustic Waves (SAW) in piezoelectric materials, such as GaAs, that are commonly used as photocathodes. Piezoelectric fields produced by the traveling SAW spatially separate electrons and holes, reducing their probability of recombination, thereby enhancing the photoemission quantum efficiency of the photocathode. Additional advantages could be increased polarization provided by the enhanced mobility of charge carriers that can be controlled by the SAW and the ionization of optically-generated excitons resulting in the creation of additional electron-hole pairs. It is expected that these novel features will reduce the cost of accelerator operation. A theoretical model for photoemission in the presence of SAW has been developed, and experimental tests of the technique are underway.
Date: July 1, 2012
Creator: A. Afanasev, F. Hassani, C.E. Korman, V.G. Dudnikov, R.P. Johnson, M. Poelker, K.E.L. Surles-Law

Epicyclic Twin-helix Magnetic Structure for Parametric-resonance Ionization Cooling

Description: Para­met­ric-res­o­nance Ion­iza­tion Cool­ing (PIC) is en­vi­sioned as the final 6D cool­ing stage of a high-lu­mi­nos­i­ty muon col­lid­er. Im­ple­ment­ing PIC im­pos­es strin­gent con­straints on the cool­ing chan­nel's mag­net­ic op­tics de­sign. This paper pre­sents a lin­ear op­tics so­lu­tion com­pat­i­ble with PIC. Our so­lu­tion con­sists of a su­per­po­si­tion of two op­po­site-he­lic­i­ty equal-pe­ri­od and equal-strength he­li­cal dipole har­mon­ics and a straight nor­mal quadrupole. We demon­strate that such a sys­tem can be ad­just­ed to meet all of the PIC lin­ear op­tics re­quire­ments while re­tain­ing large ac­cep­tance.
Date: May 1, 2010
Creator: A. Afanasev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

Quadratic electroweak corrections for polarized Moller scattering

Description: The paper discusses the two-loop (NNLO) electroweak radiative corrections to the parity violating electron-electron scattering asymmetry induced by squaring one-loop diagrams. The calculations are relevant for the ultra-precise 11 GeV MOLLER experiment planned at Jefferson Laboratory and experiments at high-energy future electron colliders. The imaginary parts of the amplitudes are taken into consideration consistently in both the infrared-finite and divergent terms. The size of the obtained partial correction is significant, which indicates a need for a complete study of the two-loop electroweak radiative corrections in order to meet the precision goals of future experiments.
Date: January 1, 2012
Creator: A. Aleksejevs, S. Barkanova, Y. Kolomensky, E. Kuraev, V. Zykunov

Prediction of Corrosion of Alloys in Mixed-Solvent Environments

Description: Corrosion is much less predictable in organic or mixed-solvent environments than in aqueous process environments. As a result, US chemical companies face greater uncertainty when selecting process equipment materials to manufacture chemical products using organic or mixed solvents than when the process environments are only aqueous. Chemical companies handle this uncertainty by overdesigning the equipment (wasting money and energy), rather than by accepting increased risks of corrosion failure (personnel hazards and environmental releases). Therefore, it is important to develop simulation tools that would help the chemical process industries to understand and predict corrosion and to develop mitigation measures. To create such tools, we have developed models that predict (1) the chemical composition, speciation, phase equilibria, component activities and transport properties of the bulk (aqueous, nonaqueous or mixed) phase that is in contact with the metal; (2) the phase equilibria and component activities of the alloy phase(s) that may be subject to corrosion and (3) the interfacial phenomena that are responsible for corrosion at the metal/solution or passive film/solution interface. During the course of this project, we have completed the following: (1) Development of thermodynamic modules for calculating the activities of alloy components; (2) Development of software that generates stability diagrams for alloys in aqueous systems; these diagrams make it possible to predict the tendency of metals to corrode; (3) Development and extensive verification of a model for calculating speciation, phase equilibria and thermodynamic properties of mixed-solvent electrolyte systems; (4) Integration of the software for generating stability diagrams with the mixed-solvent electrolyte model, which makes it possible to generate stability diagrams for nonaqueous or mixed-solvent systems; (5) Development of a model for predicting diffusion coefficients in mixed-solvent electrolyte systems; (6) Development of fundamentals of a detailed kinetic model of general corrosion, which includes a detailed treatment of local chemistry changes near ...
Date: June 5, 2003
Creator: A. Anderko, P. Wang, R. D. Young, D. P. Riemer, P. McKenzie and M. M. Lencka (OLI Systems Inc.) & Laboratory), S. S. Babu and P. Angelini (Oak Ridge National

Space-charge compensation in high-intensity proton rings

Description: Recently, it was proposed to use negatively charged electron beams for compensation of beam-beam effects due to protons in the Tevatron collider. The authors show that a similar compensation is possible in space-charge dominated low energy proton beams. The idea has a potential of several-fold increase of the FNAL Booster beam brightness. Best results will be obtained using three electron lenses around the machine circumference, using co-moving electron beam with time structure and profile approximately matched to the proton beam. This technique, if feasible, will be more cost effective than the straightforward alternative of increasing the energy of the injection linac.
Date: September 21, 2000
Creator: A. Burov, G.W. Foster and V.D. Shiltsev