UNT Libraries Government Documents Department - 5,228 Matching Results

Search Results

Post-Closure Monitoring Report for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada (Rev. No.: 0, June 2002)
There was an increase in total petroleum hydrocarbons (TPH) concentrations at all three depths within Borehole DRA-0. The oxygen concentration at 40 ft below ground surface (bgs) decreased. There was also an increase in carbon dioxide concentration at that depth. The decrease in oxygen concentrations and the increase in carbon dioxide concentration at the 40 ft bgs level could be possible indicators of natural attenuation. It is not possible to determine trends or biodegradation rates with the limited amount of data collected from the site. The sample results from this first monitoring period did not correlate with the baseline results collected in August 2000. Additional samples will be collected and the results will be compared to previously collected samples to determine if the site was at equilibrium in August 2000. Continued annual monitoring will be conducted as specified in the Closure Report to determine trends at the site. As natural attenuation occurs, the TPH concentrations should decrease. The TPH concentrations will be compared over successive monitoring events to determine trends and approximate rates. As natural attenuation occurs, oxygen will be consumed and carbon dioxide will be produced. The oxygen, nitrogen, and carbon dioxide concentrations will also be evaluated to determine if biodegradation is indicated. When all available oxygen has been consumed, methane-producing bacteria may continue the natural attenuation process so methane levels will be monitored as an additional possible indicator of natural attenuation. The rate of decrease will be determined on the microbial populations, contaminant concentrations, available nutrients, and other environmental factors. Samples were collected and submitted for microbial analysis during closure activities. The results indicated that the microbial populations and nutrients were adequate for limited bioremediation (DOE/NV, 2000). Additional sampling for microbial analysis are not planned. The site is currently inactive and the source of additional contamination was removed. ...
Tank Characterization Report for Single Shell Tank 241-C-104
Interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank.
THOUGHTS AND ''FACTS'' FROM THE AGS POLARIZED PROTON RUNS DURING THE 1980S.
This workshop's focus is on considering ways for improving the proton beam polarization that the AGS delivers to the RHIC. This talk attempts to review the first decade of AGS polarization--the 1980's; to briefly describe some aspects of the machine situation, the depolarization avoidance strategies employed and the success achieved in AGS from the perspective of one of those involved.
PROPOSAL FOR AN EBIS BASED RHIC PREINJECTOR.
A proposed new heavy ion preinjector for RHIC is described. The progress made at BNL on the development of an Electron Beam Ion Source (EBIS) has increased our confidence that one can build a preinjector meeting RHIC requirements using an EBIS producing intermediate charge state heavy ions. A new RFQ and Linac will be required to accelerate beams from this source to an energy sufficient for injection into the AGS Booster. These are both straightforward devices, very similar to ones already in operation at other laboratories. Injection into the Booster will occur at the same location as the existing heavy ion injection from the Tandem Van de Graaff.
Alignment validation
The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.
MICROBUNCH TEMPORAL DIAGNOSTIC BY COMPTON SCATTERING IN INTERFERING LASER BEAMS.
The exact solution of the classical nonlinear equation of motion for a relativistic electron in the field of two electromagnetic (EM) waves is obtained. For the particular case of the linearly polarized standing EM wave in the planar optical cavity, the intensity of the nonlinear Compton scattering, the time of flight, and the momentum variation after the relativistic electron passes along the cavity axis are calculated in weak and strong field limits. The extent of these effects depends on the initial phase of the EM wave when the electron enters the cavity. This can be used for the production, diagnosis, and acceleration of relativistic electron (positron) microbunches.
Plutonium reclamation facility (PRF), building 236-Z layup plan
This document reviews each system inside PRF to determine the operation and maintenance requirements necessary to maintain safe and predictable system performance for facility systems needed to remain operational while minimizing the maintenance and surveillance being performed. Also covered are the actions required to place PRF in a safe layup configuration while minimizing hazards and taking into account the need for reactivation of certain equipment when cleanup work commences in the future.
Reconfigurable mobile manipulation for accident response
The need for a telerobotic vehicle with hazard sensing and integral manipulation capabilities has been identified for use in transportation accidents where nuclear weapons are involved. The Accident Response Mobile Manipulation System (ARMMS) platform has been developed to provide remote dexterous manipulation and hazard sensing for the Accident Response Group (ARG) at Sandia National Laboratories. The ARMMS' mobility platform is a military HMMWV [High Mobility Multipurpose Wheeled Vehicle] that is teleoperated over RF or Fiber Optic communication channels. ARMMS is equipped with two high strength Schilling Titan II manipulators and a suite of hazardous gas and radiation sensors. Recently, a modular telerobotic control architecture call SMART (Sandia Modular Architecture for Robotic and Teleoperation) has been applied to ARMMS. SMART enables input devices and many system behaviors to be rapidly configured in the field for specific mission needs. This paper summarizes current SMART developments applied to ARMMS.
Measurement of $D^{* /-}$ Meson Production in Jets from Pp Collisions at Sqrt(S) = 7 TeV with the ATLAS Detector
Abstract Not Provided
Search for Supersymmetry using Final States with One Lepton, Jets, and Missing Transverse Momentum with the ATLAS Detector in $\sqrt{s}=7$ TeV $Pp$
Abstract Not Provided
Mass, quark-number, and sqrt sNN dependence of the second andfourth flow harmonics in ultra-relativistic nucleus-nucleuscollisions
We present STAR measurements of the azimuthal anisotropyparameter v_2 for pions, kaons, protons, Lambda, bar Lambda, Xi+bar Xi,and \Omega + bar Omega, along with v_4 for pions, kaons, protons, andLambda + bar Lambda at mid-rapidity for Au+Au collisions at sqrt sNN=62.4and 200 GeV. The v_2(p_T) values for all hadron species at 62.4 GeV aresimilar to those observed in 130 and 200 GeV collisions. For observedkinematic ranges, v_2 values at 62.4, 130, and 200 GeV are as little as10 percent-15 percent larger than those in Pb+Pb collisions at sqrt s NN=17.3 GeV. At intermediate transverse momentum (p_T from 1.5-5 GeV/c),the 62.4 GeV v_2(p_T) and v_4(p_T) values are consistent with thequark-number scaling first observed at 200 GeV. A four-particle cumulantanalysis is used to assess the non-flow contributions to pions andprotons and some indications are found for a smaller non-flowcontribution to protons than pions. Baryon v_2 is larger than anti-baryonv_2 at 62.4 and 200 GeV perhaps indicating either that the initialspatial net-baryon distribution is anisotropic, that the mechanismleading to transport of baryon number from beam- to mid-rapidity enhancesv_2, or that anti-baryon and baryon annihilation is larger in thein-plane direction.
Natural analogues of nuclear waste glass corrosion.
This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.
SHIPMENT OF TWO DOE-STD-3013 CONTAINERS IN A 9977 TYPE B PACKAGE
The 9977 is a certified Type B Packaging authorized to ship uranium and plutonium in metal and oxide forms. Historically, the standard container for these materials has been the DOE-STD-3013 which was specifically designed for the long term storage of plutonium bearing materials. The Department of Energy has used the 9975 Packaging containing a single 3013 container for the transportation and storage of these materials. In order to reduce container, shipping, and storage costs, the 9977 Packaging is being certified for transportation and storage of two 3013 containers. The challenges and risks of this content and the 9977s ability to meet the Code of Federal Regulations for the transport of these materials are presented.
SHIPMENT OF NON-TRADITIONAL CONTENTS IN THE 9977 TYPE B PACKAGE
The 9977 is a certified Type B Packaging authorized to ship uranium and plutonium in metal and oxide forms. These materials are typically confined within metallic containers designed for ease of handling and to prevent the spread of contamination. The Pacific Northwest National Laboratory (PNNL) uses Pu and U sources for the training of domestic and international customs agents in the identification and detection of radioactive materials (RAM). These materials are packed in polycarbonate containers which permit the trainees to view the RAM. The safety basis was made to authorize the use of these unusual containers. The inclusion of the PNNL Training Source Contents into the 9977 Packaging imposed unique conditions previously unanalyzed. The use of polycarbonate as a content container material, while different from any configuration previously considered, does not raise any safety issues with the package which continues to operate with a large safety margin for temperatures, pressures, containment, dose rates, and subcriticality.
RECLAMATION OF RADIOACTIVE MATERIAL PACKAGING COMPONENTS
Radioactive material packages are withdrawn from use for various reasons; loss of mission, decertification, damage, replacement, etc. While the packages themselves may be decertified, various components may still be able to perform to their required standards and find useful service. The Packaging Technology and Pressurized Systems group of the Savannah River National Laboratory has been reducing the cost of producing new Type B Packagings by reclaiming, refurbishing, and returning to service the containment vessels from older decertified packagings. The program and its benefits are presented.
The development of precipitated iron catalysts with improved stability
The objective of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. The performance targets are 88% CO+H{sub 2} conversion with less than 1% deactivation/day for 1 month and a methane and ethane selectivity of no more than 7% (based on hydrocarbons and oxygenates only) at a space velocity of at least 2 normal liters per hr per gram iron (NL/hr/gFe) using a synthesis gas with 0.5-1.0 H{sub 2}:CO ratio in a slurry reactor.
The development of precipitated iron catalysts with improved stability
The objective of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. The performance targets are 88% CO+H{sub 2} conversion with less than 1% deactivation/day for 1 month and a methane and ethane selectivity of no more than 7% (based on hydrocarbons and oxygenates only) at a space velocity of at least 2 normal liters per hr gram iron (NL/hr/gFe) using a synthesis gas with 0.5--1.0 H{sub 2}:Co ratio in a slurry reactor.
The development of precipitated iron catalysts with improved stability
The objective of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. The performance targets are 88% CO+H{sub 2} conversion with less than 1% deactivation/day for 1 month and a methane and ethane selectivity of no more than 7% (based on hydrocarbons and oxygenates only) at a space velocity of at least 2 normal liters per hr per gram iron (NL/hr/gFe) using a synthesis gas with 0.5-1.0 H{sub 2}:CP ratio in a slurry reactor.
The development of precipitated iron catalysts with improved stability
The objective of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. The performance targets are 88% CO+H{sub 2} conversion with less than 1% deactivation/day for 1 month and a methane and ethane selectivity of no more than 7% (based on hydrocarbons and oxygenates only) at a space velocity of at least 2 normal liters per hr per gram iron (NL/hr/gFe) using a synthesis gas with 0.5-1.0 H{sub 2}:CO ratio in a slurry reactor.
The development of precipitated iron catalysts with improved stability
The objective of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. The performance targets are 88% CO+H{sub 2} conversion with less than 1% deactivation/day for 1 month and a methane and ethane selectivity of no more than 7% (based on hydrocarbons and oxygenates only) at a space velocity of at least 2 normal liters per hr per gram iron (NL/hr/gFe) using a synthesis gas with 0.5-1.0 H{sub 2}:CO ratio in a slurry reactor.
The development of precipitated iron catalysts with improved stability
The objective of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. The performance targets are 88% CO+H{sub 2} conversion with less than 1% deactivation/day for 1 month and a methane and ethane selectivity of no more than 7% (based on hydrocarbons and oxygenates only) at a space velocity of at least 2 normal liters per hr per gram iron (NL/hr/gFe) using a synthesis gas with 0.5-1.0 H{sub 2}:CO ratio in a slurry reactor.
The development of precipitated iron catalysts with improved stability. Technical progress report No. 5, September 16, 1988--December 16, 1988
The objective of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. The performance targets are 88% CO+H{sub 2} conversion with less than 1% deactivation/day for 1 month and a methane and ethane selectivity of no more than 7% (based on hydrocarbons and oxygenates only) at a space velocity of at least 2 normal liters per hr per gram iron (NL/hr/gFe) using a synthesis gas with 0.5-1.0 H{sub 2}:CO ratio in a slurry reactor.
The development of precipitated iron catalysts with improved stability. Technical progress report No. 6, December 16, 1988--March 16, 1989
The objective of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. The performance targets are 88% CO+H{sub 2} conversion with less than 1% deactivation/day for 1 month and a methane and ethane selectivity of no more than 7% (based on hydrocarbons and oxygenates only) at a space velocity of at least 2 normal liters per hr per gram iron (NL/hr/gFe) using a synthesis gas with 0.5-1.0 H{sub 2}:CO ratio in a slurry reactor.
The development of precipitated iron catalysts with improved stability. Technical progress report No. 7, March 16, 1989--June 16, 1989
The objective of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. The performance targets are 88% CO+H{sub 2} conversion with less than 1% deactivation/day for 1 month and a methane and ethane selectivity of no more than 7% (based on hydrocarbons and oxygenates only) at a space velocity of at least 2 normal liters per hr per gram iron (NL/hr/gFe) using a synthesis gas with 0.5-1.0 H{sub 2}:CP ratio in a slurry reactor.
The development of precipitated iron catalysts with improved stability. Technical progress report No. 8, June 16, 1989--September 16, 1989
The objective of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. The performance targets are 88% CO+H{sub 2} conversion with less than 1% deactivation/day for 1 month and a methane and ethane selectivity of no more than 7% (based on hydrocarbons and oxygenates only) at a space velocity of at least 2 normal liters per hr per gram iron (NL/hr/gFe) using a synthesis gas with 0.5-1.0 H{sub 2}:CO ratio in a slurry reactor.
The development of precipitated iron catalysts with improved stability. Technical progress report No. 9, September 16, 1989--December 16, 1989
The objective of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. The performance targets are 88% CO+H{sub 2} conversion with less than 1% deactivation/day for 1 month and a methane and ethane selectivity of no more than 7% (based on hydrocarbons and oxygenates only) at a space velocity of at least 2 normal liters per hr per gram iron (NL/hr/gFe) using a synthesis gas with 0.5-1.0 H{sub 2}:CO ratio in a slurry reactor.
The development of precipitated iron catalysts with improved stability. Technical progress report No. 10, December 16, 1989--April 31, 1990
The objective of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. The performance targets are 88% CO+H{sub 2} conversion with less than 1% deactivation/day for 1 month and a methane and ethane selectivity of no more than 7% (based on hydrocarbons and oxygenates only) at a space velocity of at least 2 normal liters per hr gram iron (NL/hr/gFe) using a synthesis gas with 0.5--1.0 H{sub 2}:Co ratio in a slurry reactor.
Preliminary Results of Natural Icing of an Axial-Flow Turbojet Engine
Memorandum presenting a flight investigation in natural icing conditions to determine the effect of ice formations on the performance of an axial-flow turbojet engine. Tail-pipe temperature increased from 761 to 1065 degrees Fahrenheit and the jet thrust decreased from 1234 to 910 pounds during a period of 45 minutes in icing. No general conclusions can be reached from the data because the icing condition was relatively light.
Preliminary results of natural icing of an axial-flow turbojet engine
Report presenting a flight investigation in natural icing conditions to determine the effect of ice formations on the performance of an axial-flow turbojet engine. Results regarding the tail-pipe temperature, engine jet thrust, and characteristics of ice formation are provided. No general conclusions can be reached from the data because the icing condition was relatively light.
1998 Chemical Technology Division Annual Technical Report.
The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.
Status of EXO-200
EXO-200 is the first phase of the Enriched Xenon Observatory (EXO) experiment, which searches for neutrinoless double beta decay in {sup 136}Xe to measure the mass and probe the Majorana nature of the neutrino. EXO-200 consists of 200 kg of liquid Xe enriched to 80% in {sup 136}Xe in an ultra-low background TPC. Energy resolution is enhanced through the simultaneous collection of scintillation light using Large Area Avalanche Photodiodes (LAAPD's) and ionization charge. It is being installed at the WIPP site in New Mexico, which provides a 2000 meter water-equivalent overburden. EXO-200 will begin taking data in 2009, with the expected two-year sensitivity to the half-life for neutrinoless double beta decay of 6.4 x 10{sup 25} years. According to the most recent nuclear matrix element calculations, this corresponds to an effective Majorana neutrino mass of 0.13 to 0.19 eV. It will also measure the two neutrino mode for the first time in {sup 136}Xe.
Tank waste remediation system mission analysis report
The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces.
Task A: Yale Accelerator Users Group (YAUG). Second technical progress report, November 1, 1992--October 31, 1993
This report discusses the following topics: Yaug collider detector program; E-791: continued study of heavy flavors at TPL; Hadroproduction of charm and beauty; Search for composite objects produced in relativistic heavy ion collisions; and high energy physics computer facility.
Identified particle distributions in pp and Au+Au collisions atsqrt sNN=200 GeV
Transverse mass and rapidity distributions for charged pions, charged kaons, protons and antiprotons are reported for {radical}sNN = 200 GeV pp and Au+Au collisions at RHIC. The transverse mass distributions are rapidity independent within |y| < 0.5, consistent with a boost-invariant system in this rapidity interval. Spectral shapes and relative particle yields are similar in pp and peripheral Au+Au collisions and change smoothly to central Au+Au collisions. No centrality dependence was observed in the kaon and antiproton production rates relative to the pion production rate from medium-central to central collisions. Chemical and kinetic equilibrium model fits to our data reveal strong radial flow and relatively long duration from chemical to kinetic freeze-out in central Au+Au collisions. The chemical freeze-out temperature appears to be independent of initial conditions at RHIC energies.
Hybrid Organic-Inorganic Composite Solar Cells for Efficient, Low Cost, Photoelectric Energy Conversion
Cadmium selenide nanoparticles and nanoclusters were prepared and added to polymer solar cells to improve their photon capture ability. These nanoparticles did exhibit some beneficial effects on the photon conversion efficiencies of selected polymer solar cells. Ternary bulk heterojunction systems based on composites of methyl viologen-doped, CdSe nanoparticles blended with poly (3-hexothiopene) (P3HT) and 6, 6-phenyl C{sub 61}-butyric acid methyl ester (PCBM) were also tested. It was found that the devices with methyl viologen-doped CdSe nanoparticles do produce more photocurrent in a region surrounding the absorption peak of the particles (560 to 660nm) when compared to pristine P3HT:PCBM devices. Gold nanorods were also prepared and tested in some solar cells. These nanorods did produce a very small enhancement in photon absorbance, but the observed increase the photon conversion efficiency was not sufficient to make the effort worthwhile. Our goals were (1) to prepare cadmium sulfide and cadmium selenide clusters and nanoparticles to be tested as photon absorbers to enhance the photon conversion efficiency of polymer solar polymer solar cells and (2) to prepare gold and silver nanorods to be added to polymer solar cells to enhance their photon capture capability. The cadmium sulfide and cadmium selenide nanoparticles and some new nanoclusters were prepared. The cadmium selenide nanoparticles were also tested in solar cells and did exhibit some positive effects when they were combined with certain co-absorbing polymers. Due to solubility problems that were not solved in the available time, the new nanoclusters were not tested in solar cells. Ternary bulk heterojunction systems based on composites of methyl viologen doped, CdSe nanoparticles blended with poly (3-hexothiopene) (P3HT) and 6, 6-phenyl C61-butyric acid methyl ester (PCBM) have been examined in detail. The methyl viologen was added to promote charge separation of the initially formed excitons. It was found that the devices with ...
Iran's 2009 Presidential Elections
This report analyzes and discusses Iran's 2009 presidential election, particularly the campaigns of reformist candidate Mir Hussein Musavi and incumbent President Mahmoud Ahmadinejad. Allegations of vote rigging and election fraud have led to protests by supporters of candidate Musavi and have provoked international attention. This report also discusses the Obama Administration's reaction to the election results. This report also discusses briefly the current relationship between the U.S. and Iran, as well as U.S. concerns regarding Iran, such as Iran's efforts at building a nuclear weapons program.
Results from the CLIC X-Band Structure Test Program at NLCTA
As part of a SLAC-CERN-KEK collaboration on high gradient X-band structure research, several prototype structures for the CLIC linear collider study have been tested using two of the high power (300 MW) X-band rf stations in the NLCTA facility at SLAC. These structures differ in terms of their fabrication (brazed disks and clamped quadrants), gradient profile (amount by which the gradient increases along the structure, which optimizes efficiency and maximizes sustainable gradient) and HOM damping (use of slots or waveguides to rapidly dissipate dipole mode energy). The CLIC goal in the next few years is to demonstrate the feasibility of a CLIC-ready baseline design and to investigate alternatives that could increase efficiency. This paper summarizes the high gradient test results from NLCTA in support of this effort.
Geometric metastability, quivers and holography
We use large N duality to study brane/anti-brane configurations on a class of Calabi-Yau manifolds. With only branes present, the Calabi-Yau manifolds in question give rise to N=2 ADE quiver theories deformed by superpotential terms. We show that the large N duality conjecture of hep-th/0610249 reproduces correctly the known qualitative features of the brane/anti-brane physics. In the supersymmetric case, the gauge theories have Seiberg dualities which are represented as flops in the geometry. Moreover, the holographic dual geometry encodes the whole RG flow of the gauge theory. In the non-supersymmetric case, the large N duality predicts that the brane/anti-brane theories also enjoy such dualities, and allows one to pick out the good description at a given energy scale.
Fluxnet Synthesis Dataset Collaboration Infrastructure
The Fluxnet synthesis dataset originally compiled for the La Thuile workshop contained approximately 600 site years. Since the workshop, several additional site years have been added and the dataset now contains over 920 site years from over 240 sites. A data refresh update is expected to increase those numbers in the next few months. The ancillary data describing the sites continues to evolve as well. There are on the order of 120 site contacts and 60proposals have been approved to use thedata. These proposals involve around 120 researchers. The size and complexity of the dataset and collaboration has led to a new approach to providing access to the data and collaboration support and the support team attended the workshop and worked closely with the attendees and the Fluxnet project office to define the requirements for the support infrastructure. As a result of this effort, a new website (http://www.fluxdata.org) has been created to provide access to the Fluxnet synthesis dataset. This new web site is based on a scientific data server which enables browsing of the data on-line, data download, and version tracking. We leverage database and data analysis tools such as OLAP data cubes and web reports to enable browser and Excel pivot table access to the data.
A new security model for collaborative environments
Prevalent authentication and authorization models for distributed systems provide for the protection of computer systems and resources from unauthorized use. The rules and policies that drive the access decisions in such systems are typically configured up front and require trust establishment before the systems can be used. This approach does not work well for computer software that moderates human-to-human interaction. This work proposes a new model for trust establishment and management in computer systems supporting collaborative work. The model supports the dynamic addition of new users to a collaboration with very little initial trust placed into their identity and supports the incremental building of trust relationships through endorsements from established collaborators. It also recognizes the strength of a users authentication when making trust decisions. By mimicking the way humans build trust naturally the model can support a wide variety of usage scenarios. Its particular strength lies in the support for ad-hoc and dynamic collaborations and the ubiquitous access to a Computer Supported Collaboration Workspace (CSCW) system from locations with varying levels of trust and security.
LHC Signals from Warped Extra Dimensions
We study production of Kaluza-Klein gluons (KKG) at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the Standard Model (SM) fields propagating in the bulk. We show that the detection of KK gluon is challenging since its production is suppressed by small couplings to the proton's constituents. Moreover, the KK gluon decaysmostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for MKKG<~;; 4 TeV, 100 fb-1 of data at the LHC can provide discovery of the KK gluon. We utilize a sizeable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic"top-jets." We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays ("golden" modes) are suppressed. Our analysis suggests that other frameworks, for example little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely (1) Suppressed production rates for the new particles (such as Z'), due to their"lightfermion-phobic" nature, and (2) Difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons.
U.S.-European Union Trade Relations: Issues and Policy Challenges
No Description Available.
U.S.-Thailand Free Trade Agreement Negotiations
No Description Available.
Solar coal-gasification reactor with pyrolysis-gas recycle. [Patent application]
Coal (or other carbonaceous matter, such as biomass) is converted into a product gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor, and solar energy is directed into the reactor onto coal char, creating a gasification front and a pyrolysis front. A gasification zone is produced well above the coal level within the reactor. A pyrolysis zone is produced immediately above the coal level. Steam, injected into the reactor adjacent to the gasification zone, reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases flow from the gasification zone to the pyrolysis zone to generate hot char. Gases are withdrawn from the pyrolysis zone and reinjected into the region of the reactor adjacent the gasification zone. This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas is withdrawn from a region of the reactor between the gasification zone and the pyrolysis zone. The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.
Effect of thin-film coating on wear in EGR-contaminated oil.
Increased use of higher-efficiency compression ignition direct injection (CIDI) diesel engines instead of today's gasoline engines will result in reduced fuel consumption and greenhouse gases emissions. However, NO{sub x} and particulate exhaust emissions from diesel engines must be significantly reduced due to their possible adverse health effects. Exhaust gas recirculation (EGR) is an effective way to reduce NO{sub x} emissions from diesel engines, but the particulates and acidic exhaust products in the recirculated gas will contaminate engine lubricant oil by increasing the soot content and total acid number (TAN). These factors will increase the wear rate in many critical engine components and seriously compromise engine durability. We have investigated the use of commercially available thin and hard coatings (TiN, TiCN, TiAlN, and CrN) to mitigate the negative effects of EGR on wear. In tests with the four-ball machine according to ASTM D4172, we found that all the four coatings deposited on M-50 steel significantly reduced wear in EGR-contaminated oils when compared with uncoated M50 steel balls.
Low-friction coatings for air bearings in fuel cell air compressors
In an effort to reduce fuel consumption and emissions, hybrid vehicles incorporating fuel cell systems are being developed by automotive manufacturers, their suppliers, federal agencies (specifically, the US Department of Energy) and national laboratories. The fuel cell system will require an air management subsystem that includes a compressor/expander. Certain components in the compressor will require innovative lubrication technology in order to reduce parasitic energy losses and improve their reliability and durability. One such component is the air bearing for air turbocompressors designed and fabricated by Meruit, Inc. Argonne National Laboratory recently developed a carbon-based coating with low friction and wear attributes; this near-frictionless-carbon (NFC) coating is a potential candidate for use in turbocompressor air bearings. The authors present here an evaluation of the Argonne coating for air compressor thrust bearings. With two parallel 440C stainless steel discs in unidirectional sliding contact, the NFC reduced the frictional force four times and the wear rate by more than two orders of magnitude. Wear mechanism on the uncoated surface involved oxidation and production of iron oxide debris. Wear occurred on the coated surfaces primarily by a polishing mechanism.
Performance of amorphous carbon coating in turbocompressor air bearings.
No abstract prepared.
Peaceful Uses Bona Fides: Criteria for Evaluation and Case Studies
This study applies a set of indicators to assess the peaceful nature of a state’s nuclear program. Evaluation of a country’s nuclear program relative to these indicators can help the international community to take appropriate actions to ensure that the growth of the global nuclear energy industry proceeds peacefully and to minimize nuclear proliferation risks.
Industrial Applications of Induced Positron Annihilation
This presentation discusses industrial applications of induced positron annihilation.
CENRTC Project {number_sign}2F3EOA, OCB A-386, acceptance test procedure
This test procedure provides the steps necessary to verify correct functional operation of controls, annunciators, alarms, protective relays and related systems impacted by CENRTC {number_sign}2F3EOA, Microwave Transfer Trip Project, modification work performed under work package 6B-93-00043/M (CENRTC 2F3EOA MWTT OCB A-386 PACKAGE). This procedure separates four tests into separate sections: Energization of A-386 Duplex Panel and Circuits; Local RFL 6750 function tests and start-up; SCADA tests; and A-386 local trip tests.