UNT Libraries Government Documents Department - 16,672 Matching Results

Search Results

Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses
Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.
Classification of hydrostratigraphic units at the Savannah River Site, South Carolina
A detailed synthesis of the hydrologic, geophysical and core data from wells penetrating the updip Mesozoic-Cenozoic Coastal Plain sequence at and near the Savannah River Site (SRS) was conducted to define and classify the hydrostratigraphic units. The purpose of the study was to give the SRS a single unified hydrostratigraphic classification that defines and addresses the hydrogeologic characteristics of the aquifers underlying the site. The characterization, areal distribution and classification of the aquifer and aquifer systems gives SRS the tools to evaluate ground water movement and contaminant transport in a comprehensive regional context. An alpha-numeric nomenclature has been temporarily adopted in this report for classifying the aquifers and aquifer systems at SRS. Formal geographic names for the aquifers and aquifer systems will be proposed in the near future but must be agreed upon and ratified by the South Carolina Hydrostratigraphic Subcommittee which was in part organized for the purpose. The classification utilizes a hierarchy of terms ranked at three levels: Aquifer Systems that transmit ground water regionally; Aquifer Units which are mappable units > 400 square miles in area; and Aquifer Zones that differentiate aquifers internally on the basis of locally significant characteristics.
Classification of hydrostratigraphic units at the Savannah River Site, South Carolina
A detailed synthesis of the hydrologic, geophysical and core data from wells penetrating the updip Mesozoic-Cenozoic Coastal Plain sequence at and near the Savannah River Site (SRS) was conducted to define and classify the hydrostratigraphic units. The purpose of the study was to give the SRS a single unified hydrostratigraphic classification that defines and addresses the hydrogeologic characteristics of the aquifers underlying the site. The characterization, areal distribution and classification of the aquifer and aquifer systems gives SRS the tools to evaluate ground water movement and contaminant transport in a comprehensive regional context. An alpha-numeric nomenclature has been temporarily adopted in this report for classifying the aquifers and aquifer systems at SRS. Formal geographic names for the aquifers and aquifer systems will be proposed in the near future but must be agreed upon and ratified by the South Carolina Hydrostratigraphic Subcommittee which was in part organized for the purpose. The classification utilizes a hierarchy of terms ranked at three levels: Aquifer Systems that transmit ground water regionally; Aquifer Units which are mappable units > 400 square miles in area; and Aquifer Zones that differentiate aquifers internally on the basis of locally significant characteristics.
Results from the Soviet-American gallium experiment
A radiochemical {sup 71}Ga-{sup 71}Ge experiment to determine the primary flux of neutrinos from the Sun has begun operation at the Baksan Neutrino Observatory. The number of {sup 71}Ge atoms extracted from thirty tons of gallium was measured in five runs during the period of January to July 1990. Assuming that the extraction efficiency for {sup 71}Ge atoms produced by solar neutrinos is the same as from natural Ge carrier, we observed the capture rate to be 20 + 15/{minus}20 (stat) {plus_minus} 32 (syst) SNU, resulting in a limit of less than 79 SNU (90% CL). This is to be compared with 132 SNU predicted by the Standard Solar Model.
An engineering and economic evaluation of the methane de-NOX{sup SM} technology
The Institute of Gas Technology (IGT) and Ogden Martin Systems, Inc. (OMS) are conducting joint engineering and economic evaluation of IGT`s METHANE de-NOX{sup SM} technology for its application to new, as well as retrofit, municipal waste combustors (MWCs). It is anticipated that this new technology offers a technically and economically attractive alternative to existing selective noncatalytic reduction (SNCR) systems for new facilities, as well as in retrofit applications. Consequently, IGT and OMS are considering pursuing a long-term demonstration of this technology on an OMS MWC. The METHANE de-NOX approach was developed based on extensive full-scale MWC infurnace characterization and pilot-scale testing using simulated combustion products. The approach involves injection of natural gas, together with recirculated flue gases (for mixing), above the grate to provide oxygen-deficient combustion conditions that promote the destruction of NO{sub x} precursors, as well as NO{sub x}. Extensive pilot-scale testing, using both simulated combustion products and actual municipal waste (MW), showed that significant NO{sub x} reduction could be achieved. The results were used to define the key operating parameters for a field evaluation of the process. A full-scale METHANE de-NOX system was designed and retrofitted to a 100-ton/day Riley/Takuma mass burn system at the Olmsted County Waste-to-Energy facility for this field evaluation. The results of the field evaluation tests demonstrated the reduction of up to 60% in NO{sub x} emissions and up to 50% in CO emissions. Further benefits included a reduction of up to 50% in excess air requirements and boiler efficiency improvements. This paper describes the METHANE de-NOX technology and discusses the results to date of the IGT/OMS engineering and economic study. The focus is on the discussion of the benefits and drawbacks of this new technology in comparison with existing SNCR systems.
Development of novel copper-based sorbents for hot-gas cleanup. Technical report, September 1--November 30, 1991
The objective of this investigation is to evaluate several novel copper-based binary oxides for their suitability as regenerable sorbents for hot gas cleanup application in the temperature range of 650{degree} to 850{degree}C (1200{degree}--1550{degree}F). To achieve this objective, several novel copper-based binary oxide sorbents will be prepared. Experimental tests will be conducted at ambient pressure to determine the stability, sulfidation capacity, regenerability, and sulfidation kinetics of the novel sorbents. Tests will also be conducted at high pressure for the determination of the sulfidation reactivity, regenerability, and durability of the sorbents. The attrition characteristics of the sorbents will also be determined.
Stabilization and/or regeneration of spent sorbents from coal gasification. Technical report, September 1--November 30, 1991
The objective of this investigation is to determine the effects of SO{sub 2} partial pressure and reaction temperature on the conversion of sulfide containing solid wastes from coal gasifiers to stable and environmentally acceptable calcium-sulfate, while preventing the release of sulfur dioxide through undesirable side reactions during the stabilization step. An additional objective of this program is to investigate the use of the Spent Sorbent Regeneration Process (SSRP) to regenerate spent limestone, from a fluidized-bed gasifier with in-bed sulfur capture, for recycling to the gasifier. To achieve these objectives, selected samples of partially sulfided sorbents will be reacted with oxygen at a variety of operating conditions under sufficient SO{sub 2} partial pressure to prevent release of sulfur from the solids during stabilization that reduces the overall sorbent utilization. Partially sulfided limestone will also be regenerated with water to produce calcium hydroxide and release sulfur as H{sub 2}S. The regenerated sorbent will be dewatered, dried and pelletized. The reactivity of the regenerated sorbent toward H{sub 2}S will also be determined. During this quarter sulfidation tests were conducted in a quartz fluidized-bed reactor in which the selected calcium-based sorbents were first calcined and then were reacted with hydrogen sulfide at ambient pressure and 1650{degree}F. These tests were conducted with each sorbent in two particle sizes. Chemical analyses of the partially sulfided sorbents indicate that the extent of sulfidation was in the range of 40--50%. The partially sulfided material will be reacted with oxygen to determine the effects of temperature and SO{sub 2} partial pressure on the stabilization of the calcium sulfide in solid waste materials. 23 refs., 1 fig., 2 tabs.
Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, March 1--May 31, 1995
The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors. In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen, calcium sulfide and calcium carbonate will be determined by conducting tests in a pressurized thermogravimetric analyzer unit. The sulfate tests conducted during this quarter, focused on the determination of the rate of sulfation reaction involving partially sulfided half-calcined dolomite and oxygen. The test parameters included CO{sub 2} and O{sub 2} concentrations, reaction temperature and pressure, as well as the sorbent particle size. The results obtained during this quarter suggest that the rate of sulfation reaction involving partially sulfided half-calcined dolomite and oxygen is very fast at temperatures above 850 C which rapidly increases with increasing temperature, achieving more than 85% conversion in less than a few minutes. The reaction appears to continue to completion, however, above 85% conversion, the rate of reaction appears to be low, requiring long residence time to reach complete conversion.
Stabilization and/or regeneration of spent sorbents from coal gasification. Final technical report, September 1, 1991--August 31, 1992
The objective of this investigation was to determine the effects of SO{sub 2} partial pressure and reaction temperature on the conversion of sulfide containing solid wastes from coal gasifiers to stable and environmentally acceptable calcium sulfate, while preventing the release of sulfur dioxide during the stabilization step. An additional objective of this study was to investigate the use of the Spent Sorbent Regeneration Process (SSRP) to regenerate spent Ca-based sorbent, from a fluidized-bed gasifier with in-bed sulfur capture, for recycling to the gasifier. To achieve these objectives, selected samples of partially sulfided sorbents were reacted with oxygen and SO{sub 2} at various operating conditions and the extent of CaS and CaO conversion were determined. Partially sulfided dolomite was used in sulfidation/regeneration over several cycles and the regeneration efficiency and sorbent reactivity were determined after each cycle. The results of the stabilization tests show that partially sulfided Ca-based sorbents (both limestone and dolomite) can be sulfated at temperatures above 1500{degrees}F resulting in high CaS conversion without release of SO{sub 2} producing environmentally acceptable material for disposal in landfills. The results also indicate that spent dolomite can be regenerated in the SSRP process, in successive cycles, with high regeneration efficiency without loss of reactivity toward hydrogen sulfide.
Stabilization of spent sorbents from coal gasification. Final technical report, September 1, 1992--August 31, 1993
The objective of this investigation was to determine the rates of reactions involving partially sulfided dolomite and oxygen, which is needed for the design of the reactor system for the stabilization of sulfide-containing solid wastes from gasification of high sulfur coals. To achieve this objective, samples of partially sulfided dolomite were reacted with oxygen at a variety of operating conditions in a fluidized-bed reactor. The effect of external diffusion was eliminated by using small quantities of the sorbent and maintaining a high flow rate of the reactant gas. The reacted sorbents were analyzed to determine the extent of conversion as a function of operating variables including sorbent particle size, reaction temperature and pressure, and oxygen concentration. The results of sulfation tests indicate that the rate of reaction increases with increasing temperature, increasing oxygen partial pressure, and decreasing sorbent particle size. The rate of the sulfation reaction can be described by a diffuse interface model where both chemical reaction and intraparticle diffusion control the reaction rate. The kinetic model of the sulfation reaction was used to determine the requirements for the reactor system, i.e., reactor size and operating conditions, for successful stabilization of sulfide-containing solid wastes from gasification of high sulfur coals (with in-bed desulfurization using calcium based sorbents). The results indicate that the rate of reaction is fast enough to allow essentially complete sulfation in reactors with acceptable dimensions. The optimum sulfation temperature appears to be around 800{degrees}C for high pressure as well as atmospheric stabilization of the spent sorbents.
Development of novel copper-based sorbents for hot-gas cleanup. Final technical report, September 1, 1991--August 31, 1992
The objective of this investigation was to evaluate several novel copper-based binary oxides for their suitability as regenerable sorbents for hot gas cleanup application in the temperature range of 650{degree} to 850{degree}C. To achieve this objective, several novel binary oxides of copper were systematically evaluated and ranked in terms of their high-temperature stability against reduction to metal, sulfidation reactivity, and regenerability. The sorbents studied included oxides of chromium, cerium, aluminum, magnesium, manganese, titanium, iron, and silicon. The results of initial testing indicated that mixed binary oxides of copper with chromium (CuCr{sub 2}O{sub 4}) and cerium (CuO{circle_dot}CeO{sub 2}) were the most promising sorbents for such high temperature gas cleanup applications. These two sorbents were further evaluated in cyclic sulfidation/regeneration tests in 10--15 cycles to determine the effect of operating conditions on their performance. The results of this investigation indicate that the two selected sorbents, copper-chromium and copper-cerium, are capable of removing H{sub 2}S from the hot fuel gas to very low levels (<10 ppmv) at temperatures as high as 850{degree}C with good sorbent regenerability in cyclic process. These sorbents should be further studied to achieve optimum sorbent composition for hot gas cleanup application.
Advanced Low-Temperature Fluid Bed Sorbents
This paper discusses the results obtained in an ongoing study geared towards developing advanced mixed-metal oxide sorbents for desulfurization of coal-derived fuel gases in the temperature range of 350 to 550{degrees}C. The paper focuses on the study related to the development of durable sorbents suitable for fluidized-bed application and addresses thermodynamic considerations, sulfidation kinetics, regenerability, and the physical and chemical characteristics of a number of novel sorbents.
Development of regenerable copper-based sorbents for hot gas cleanup. Technical report, September 1, 1995--November 30, 1995
The overall objective of this study is to determine the effectiveness of the copper-chromite sorbent (developed in previous ICCI-funded projects) for longer duration application under optimum conditions in the temperature range of 550{degrees}-650{degrees}C to minimize sorbent reduction and degradation during the cyclic process. To achieve this objective, several formulations of copper chromite sorbents are prepared. These sorbent formulations are screened for their desulfurization and regeneration capability at predetermined temperatures and gas residence times. The durability of the best sorbent formulation identified in the screening tests is evaluated in ``long-term`` durability tests conducted at the optimum operating conditions. This includes testing the sorbent in pellet and granular forms in packed- and fluidized-bed reactors. During this quarter, twenty one copper chromite-based sorbent formulations were prepared. Two sorbent formulations that have acceptable crush strength, designated as CuCr-10 and CuCr-21, were tested over 5 and 6 cycles respectively. The results indicate that both sorbents are reactive toward H{sub 2}S at 650{degrees}C and that the reactivity of the sorbents are relatively constant over the first 5 to 6 cycles. The H{sub 2}S prebreakthrough concentrations were generally about 20 to 30 ppm, making them suitable for IGCC application.
Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, September 1--November 30, 1994
The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen (gaseous reactant); and calcium sulfide and calcium carbonate (solid reactants), will be determined by conducting tests in a pressurized thermogravimetric analyzer (HPTGA) unit. The effects of sorbent type, sorbent particle size, reactor temperature and pressure; and O{sub 2} as well as SO{sub 2} partial pressures on the sulfation reactions rate will be determined. During this quarter, samples of the selected limestone and dolomite were sulfided in the fluidized-bed reactor. These tests were conducted in both calcining and non-calcining operating conditions to produce partially-sulfided sorbents containing calcium oxide and calcium carbonate, respectively. These samples which represent the carbonizer discharge material, will be used as the feed material in the sulfation tests to be conducted in the HPTGA unit during the next quarter.
Stabilization of spent sorbents from coal-based power generation processes. Technical report, September 1, 1995--November 30,1995
The overall objective of this study is to determine the effect of implementation of the new and more stringent EPA Protocol Test Method involving sulfide containing waste, on the suitability of the oxidized spent sorbents from gasification of of high sulfur coals for disposal in landfills, and to determine the optimum operating conditions in a ``final`` hydrolysis stage for conversion of the residual calcium sulfide in these wastes to materials that are suitable for disposal in landfills. An additional objective is to study the effect of ash on the regeneration and ash-sorbent separation steps in the Spent Sorbent Regeneration Process (SSRP). To achieve these objectives, a large set of oxidized samples of sulfided calcium-based sorbents (produced in earlier ICCI-funded programs) as well as oxidized samples of gasifier discharge (containing ash and spent sorbent) are tested according to the new EPA test protocol. Samples of the oxidized spent sorbents that do not pass the EPA procedure are reacted with water and carbon dioxide to convert the residual calcium sulfide to calcium carbonate. During this quarter, samples of oxidized sulfided calcium-based sorbents, including untreated calcium sulfide-containing feed materials, were analyzed using both weak acid and more stringent strong acid tests. Preliminary analysis of the H{sub 2}S leachability test results indicate that all samples (including those that were not oxidized) pass the EPA requirement of 500 mg H{sub 2}S per kg of solid waste. However, under the strong acid test procedure, samples containing more than 2.5% calcium sulfide fail the EPA requirement.
New technologies for item monitoring
This report responds to the Department of Energy`s request that Sandia National Laboratories compare existing technologies against several advanced technologies as they apply to DOE needs to monitor the movement of material, weapons, or personnel for safety and security programs. The authors describe several material control systems, discuss their technologies, suggest possible applications, discuss assets and limitations, and project costs for each system. The following systems are described: WATCH system (Wireless Alarm Transmission of Container Handling); Tag system (an electrostatic proximity sensor); PANTRAK system (Personnel And Material Tracking); VRIS (Vault Remote Inventory System); VSIS (Vault Safety and Inventory System); AIMS (Authenticated Item Monitoring System); EIVS (Experimental Inventory Verification System); Metrox system (canister monitoring system); TCATS (Target Cueing And Tracking System); LGVSS (Light Grid Vault Surveillance System); CSS (Container Safeguards System); SAMMS (Security Alarm and Material Monitoring System); FOIDS (Fiber Optic Intelligence & Detection System); GRADS (Graded Radiation Detection System); and PINPAL (Physical Inventory Pallet).
Characterization of surfactants in the presence of oil for steam foam application
The steam foam process has been applied in the oil fields since the late 1970`s. The mechanism of the process, however, is not known fully; particularly the detrimental effects of oil on foam, while known, are still unexplained. Understanding the mechanisms of foam generation, stability, and mobility of foam to improve the development of field level projects has been the focus of the attention of many workers of the oil industry. Extensive laboratory studies have been carried out, mostly without oil but some with oil. This study falls in the later category. A one dimensional sandpack (6 ft X 2.15 in) model is used to investigate the behavior of four anionic sulfonate surfactants of varying chemical structure with steam. The study is performed with an crude oil at residual oil saturation of about 12 percent of the pore volume. The observed pressure drops across the various sections of the pack are used to study the behavior of the surfactant. The tested surfactants vary in chain length, aromatic structure and number of ionic charges. A linear toluene sulfonate produced the highest strength foam in presence of the oil at residual saturations, as compared to the alpha olefin sulfonates. This is in contrast to the behavior of the surfactants in the absence of oil, where the alpha olefin sulfonates perform better. The reason for this change in behavior is the relative propagation rate of the foams produced by the surfactants. This conclusion is based on the observation that increase in propagation rate decreases the detrimental effect of oil; while the propagation rate is of little significance without oil. The disulfonate performed better in the presence of oil. The improvement in the performance is embedded in the propagation rate of these surfactants as the rate of propagation in this case is also high. …
Characterization of surfactants in the presence of oil for steam foam application
The steam foam process has been applied in the oil fields since the late 1970's. The mechanism of the process, however, is not known fully; particularly the detrimental effects of oil on foam, while known, are still unexplained. Understanding the mechanisms of foam generation, stability, and mobility of foam to improve the development of field level projects has been the focus of the attention of many workers of the oil industry. Extensive laboratory studies have been carried out, mostly without oil but some with oil. This study falls in the later category. A one dimensional sandpack (6 ft X 2.15 in) model is used to investigate the behavior of four anionic sulfonate surfactants of varying chemical structure with steam. The study is performed with an crude oil at residual oil saturation of about 12 percent of the pore volume. The observed pressure drops across the various sections of the pack are used to study the behavior of the surfactant. The tested surfactants vary in chain length, aromatic structure and number of ionic charges. A linear toluene sulfonate produced the highest strength foam in presence of the oil at residual saturations, as compared to the alpha olefin sulfonates. This is in contrast to the behavior of the surfactants in the absence of oil, where the alpha olefin sulfonates perform better. The reason for this change in behavior is the relative propagation rate of the foams produced by the surfactants. This conclusion is based on the observation that increase in propagation rate decreases the detrimental effect of oil; while the propagation rate is of little significance without oil. The disulfonate performed better in the presence of oil. The improvement in the performance is embedded in the propagation rate of these surfactants as the rate of propagation in this case is also high. …
Summary of beryllium specifications, current and historical
This report summarizes beryllium properties included in producer, Department of Energy, and government specifications. The specifications are divided into two major categories: current and historical. Within each category the data are arranged primarily according to increasing purity and secondarily by increasing tensile properties. Qualitative comments on formability and weldability are included. Also, short summaries of powder production and consolidation techniques are provided.
Design characteristics for facilities which process hazardous particulate
Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.
Role of C, O and H in III-V nitrides
The light ion impurities C, 0 and H have been implanted or diffused into GaN and related compounds and their effect on the electrical properties of these materials measured by Hall, C-V and SIMS as a function of annealing temperatures from 300--11OO{degree}C. While C in as-grown GaN appears to create an acceptor under MOMBE conditions, implanted C shows no measurable activity. Similarly, implanted 0 does not show any shallow donor activity after annealing at {le}700{degree}C, but can create high resistivity regions (10{sup 6} {Omega}/{open_square}) in GaN, AlInN and InGaN for device isolation when annealed at 500--70O{degree}C. Finally, hydrogen is found to passivate shallow donor and acceptor states in GaN, InN. InAlN and InGaN, with dissociation of the neutral complexes at >450{degree}C. The liberated hydrogen does not leave the nitride films until much higher annealing temperatures (>800{degree}C). Typical reactivation energies are {approximately}2.0 eV for impurity-hydrogen complexes.
Inductively Coupled Plasma Etching of III-V Semiconductors in BCl(3)-Based Chemistries: Part 1: GaAs, GaN, GaP, GaSb and AlGaAs
BC13, with addition of Nz, Ar or Hz, is found to provide smooth anisotropic pattern transfer in GaAs, GaN, GaP, GaSb and AIGriAs under Inductively Coupled Plasma conditions, Maxima in the etch rates for these materials are observed at 33% N2 or 87$'40 Hz (by flow) addition to BC13, whereas Ar addition does not show this behavior. Maximum etch rates are typically much higher for GaAs, Gap, GaSb and AIGaAs (-1,2 @rein) than for GaN (-0.3 ymu'min) due to the higher bond energies of the iatter. The rates decrease at higher pressure, saturate with source power (ion flux) and tend to show maxima with chuck power (ion energy). The etched surfaces remain stoichiometric over abroad range of plasma conditions.
Comparison of ICl- and IBr-Based Plasma Chemistries for Inductively Coupled Plasma Etching of GaN, InN and AlN
A parametric study of the etch characteristics of GaN, AIN and InN has been earned out with IC1/Ar and IBr/Ar chemistries in an Inductively Coupled Plasma discharge. The etch rates of InN and AIN were relatively independent of plasma composition, while GaN showed increased etch rates with interhalogen concentration. Etch rates for all materials increased with increasing rf chuck power, indicating that higher ion bombardment energies are more efficient in enhancing sputter resorption of etch products. The etch rates increased for source powers up to 500 W and remained relatively thereafter for all materials, while GaN and InN showed maximum etch rates with increasing pressure. The etched GaN showed extremely smooth surfaces, which were somewhat better with IBr/Ar than with IC1/Ar. Maximum selectivities of- 14 for InN over GaN and >25 for InN over AIN were obtained with both chemistries.
Effect of Inert Gas Additive Species on Cl(2) High Density Plasma Etching of Compound Semiconductors: Part 1. GaAs and GaSb
The role of the inert gas additive (He, Ar, Xe) to C12 Inductively Coupled Plasmas for dry etching of GaAs and GaSb was examined through the effect on etch rate, surface roughness and near-surface stoichiometry. The etch rates for both materials go through a maximum with Clz 0/0 in each type of discharge (C12/'He, C12/Ar, C12/Xc), reflecting the need to have efficient ion-assisted resorption of the etch products. Etch yields initially increase strongly with source power as the chlorine neutral density increases, but decrease again at high powers as the etching becomes reactant-limited. The etched surfaces are generally smoother with Ax or Xe addition, and maintain their stoichiometry.
Effect of Inert Gas Additive Species on Cl(2) High Density Plasma Etching of Compound Semiconductors: Part II. InP, InSb, InGaP and InGaAs
The effects of the additive noble gases He, Ar and Xe on chlorine-based Inductively Coupled Plasma etching of InP, InSb, InGaP and InGaAs were studied as a function of source power, chuck power and discharge composition. The etch rates of all materials with C12/He and C12/Xe are greater than with C12/Ar. Etch rates in excess of 4.8 pndmin for InP and InSb with C12/He or C12/Xe, 0.9 pndmin for InGaP with C12/Xe, and 3.8 prdmin for InGaAs with Clz/Xe were obtained at 750 W ICP power, 250 W rf power, - 1570 C12 and 5 mTorr. All three plasma chemistries produced smooth morphologies for the etched InGaP surfaces, while the etched surface of InP showed rough morphology under all conditions.
Inductively Coupled Plasma Etching of III-V Semiconductors in BCl(3)-Based Chemistries: Part II: InP, InGaAs, InGaAsP, InAs and AllnAs
A parametric study of etch rates and surface morphologies of In-containing compound semiconductors (InP, InGaAs, InGaAsP, InAs and AlInAs) obtained by BClj-based Inductively Coupled Plasmas is reported. Etch rates in the range 1,500-3,000 &min. are obtained for all the materials at moderate source powers (500 W), with the rates being a strong function of discharge composition, rf chuck power and pressure. Typical root-mean-square surface roughness of-5 nm were obtained for InP, which is worse than the values obtained for Ga-based materials under the same conditions (-1 run). The near surface of etched samples is typically slightly deficient in the group V element, but the depth of this deficiency is small (a few tens of angstroms).
Group-III Nitride Etch Selectivity in BCl(3)/Cl(2) ICP Plasmas
Patterning the group-IH nitrides has been challenging due to their strong bond energies and relatively inert chemical nature as compared to other compound semiconductors. Plasma etch processes have been used almost exclusively to pattern these films. The use of high-density plasma etch systems, including inductively coupled plasmas (ICP), has resulted in relatively high etch rates (often greater than 1.0 pmhnin) with anisotropic profiles and smooth etch morphologies. However, the etch mechanism is often dominated by high ion bombardment energies which can minimize etch selectivity. The use of an ICP-generated BCl~/C12 pkyma has yielded a highly versatile GaN etch process with rates ranging from 100 to 8000 A/rnin making this plasma chemistry a prime candidate for optimization of etch selectivity. In this study, we will report ICP etch rates and selectivities for GaN, AIN, and InN as a function of BCl~/Clz flow ratios, cathode rf-power, and ICP-source power. GaN:InN and GaN:AIN etch selectivities were typically less than 7:1 and showed the strongest dependence on flow ratio. This trend maybe attributed to faster GaN etch rates observed at higher concentrations of atomic Cl which was monitored using optical emission spectroscopy (OES). ~E~~~~f:~ INTRODUCTION DEC j 4898 Etch selectivi
Effects of Hydrogen Implantation into GaN
Proton implantation in GaN is found to reduce the free carrier density through two mechanisms - first, by creating electron and hole traps at around Ec-0.8eV and Ev+0.9eV that lead to compensation in both n- and p-type material, and second, by leading to formation of (AH)O complexes, where A is any acceptor (Mg, Ca, Zn, Be, Cd). The former mechanism is usefid in creating high resistivity regions for device isolation, whereas the latter produces unintentional acceptor passivation that is detrimental to device performance. The strong affinity of hydrogen for acceptors leads to markedly different redistribution behavior for implanted in n- and p-GaN due to the chemical reaction to form neutral complexes in the latter. The acceptors may be reactivated by simple annealing at 2600{degrees}C, or by electron injection at 25-150{degrees}C that produces debonding of the (AH) centers. Implanted hydrogen is also strongly attracted to regions of strain in heterostructure samples during annealing, leading to pile-up at epi-epi and epi-substrate interfaces. II? spectroscopy shows that implanted hydrogen also decorates VG, defects in undoped and n-GaN.
The role of catalyst precursor anions in coal gasification. Eighth quarterly report, [July--September 1993]
This project investigates the roles of various aqueous soluble catalyst precursor anions, specifically acetate, chloride, nitrate, sulfate, and carbonate anions on the surface electrical properties of coal and seeks to understand the effects of these anions on the adsorption, dispersion and activities of calcium and potassium. The effects of the various anions on coal char gasification is currently under investigation. The influence of acetate, chloride and nitrate ions, when using the corresponding potassium compounds, are discussed in this report. The thermograms for the char preparation in nitrogen show that rapid devolatilization of moisture and other volatile materials occurs in the first 30 min. The rate of weight loss decreases significantly thereafter up to about 70 min. when char preparation was complete. Introduction of carbon dioxide after this time resulted in only a small amount of carbon gasification of the unloaded, demineralized coal. However, the chars containing the acetate, chloride or nitrate of potassium gave reactivities of 24.8, 30.4 or 24.3 %wt., respectively. The catalysts were ion-exchanged with the salt solutions and the corresponding potassium content were 2.9, 2.6 and 2.3 %wt. The higher reactivities of the catalyzed chars compared to the unloaded char correlates the high degree of demineralization and the resultant low catalytic activity by the inherent inorganic materials. It is observed that the potassium acetate and the potassium nitrate have similar reactivities, while the reactivity in the presence of KCl is higher. This finding contrasts some of the previous literature reports which show that oxygen-containing catalytic salts are more active catalysts due to the formation of carbon-oxygen-metal bonds which have been postulated as pre-requisites to carbon gasification.
The role of catalyst precursor anions in coal gasification. Fourth quarterly report
The aims of the proposed project are to enrich our understanding of the roles of various aqueous soluble catalyst precursor anions on the surface electrical properties of coal and to ascertain the influence of the surface charge on the adsorption, dispersion, and activities of calcium and potassium. These goals will be achieved by impregnating a demineralized North Dakota lignite (PSOC 1482) with calcium or potassium catalyst precursors containing acetate (CH{sub 3}COO{sup {minus}}), chloride (CI{sup {minus}}), nitrate (NO{sub 3}{sup {minus}}), sulfate (SO{sub 4}{sup 2{minus}}), and carbonate (CO{sub 3}{sup 2{minus}}) anions. In the past quarter, the effects of (CH{sub 3}COO{sup {minus}}), CI{sup {minus}}, (NO{sub 3}{sup {minus}}), (CO{sub 3}{sup 2{minus}}) or (CO{sub 3}{sup 2{minus}}) on the surface charge properties of the coal has been initiated using the calcium salts of these anions. Like the corresponding potassium compounds investigated previously, increasing anion concentrations produce less negative charge on the coal surface through the interaction of calcium ions with the surface. This was confirmed by metal adsorption and chemical analysis of the filtered coal particles. The extent of metal adsorption was strongly dependent on the catalyst precursor. For potassium, maximum metal uptake from solution was obtained using potassium carbonate, followed by potassium acetate, while the lowest metal loadings were obtained when using the chloride, nitrate or the sulfate of potassium. The adsorption data are generally in agreement with the zeta potential results and suggest electrostatic attraction between the metal cation and the anionic coal surface. Fourier transform infrared studies are in progress to elucidate the coal-catalyst interactions.
A novel approach to highly dispersing catalytic materials in coal for gasification. Eighth quarterly report, July 1, 1991--September 30, 1991
This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalyst for coal gasification. The lower cost and high catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char activities. The effects of potassium impregnation conditions (pH and coal surface charge) on the reactivities, in carbon dioxide, of chars derived from demineralized lignite, subbituminous and bituminous coals have been determined. Impregnation of the acid-leached coal with potassium from strongly acidic solutions resulted in initial slow char reactivity which progressively increased with reaction time. Higher reactivities were obtained for catalyst (potassium) loaded at pH 6 or 10. The dependence of char gasification rates on catalyst addition pH increased in the order: pH 6 {approximately} pH 10 {much_gt} pH 1.
A novel approach to highly dispersing catalytic materials in coal for gasification. Final technical report, September 1989--November 1992
The objectives of this project were to investigate the effects of coal surface charge on the uptake of aqueous soluble metal catalysts from solution and to determine the influence of the interfacial interaction on char reactivity. Another goal is to assess the potential of using potassium carbonate, potassium acetate or their mixtures as catalysts for char gasification. The lower cost and the high catalytic activity of the latter compound will produce economic benefits by reducing the amount of potassium carbonate required for efficient char reactivities on a commercial scale. To minimize the interference of the coals` inherent inorganic materials with the added calcium or potassium, the gasification studies were restricted to the demineralized coals. In a manner similar to the effect of pH on the surface electrochemistry of the coals, the reactivities of the calcium- or potassium-loaded chars in bon dioxide at 800{degree}C were dependent upon the pH at which the catalysts were ion-exchanged onto the coals. For the calcium-containing chars, the reactivities increased in the order: pH 6 > pH 10 > pH 1. In contrast, the variation of the gasification rates with potassium loading pH was: pH 6 {approximately} pH 10 {much_gt} pH 1. However, simultaneous adsorption of the metals at {approximately} pH 1 enhanced char reactivity relative to metals loading at pH 6 or 10. These findings are attributed to the differences in the extent of electrostatic interaction between the calcium or potassium ions and the charged coal surface during catalyst loading from solution.
Surface modified coals for enhanced catalyst dispersion and liquefaction. Quarterly report, 1996
The aim of this work is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants onto coal. The application of surfactants to coal beneficiation and coal-water slurry preparation is well known. However, the effects of surfactants on catalyst loading and dispersion prior to coal conversion processes have not been investigated. The current work is focused on the influence of the cationic surfactant dodecyl dimethyl ethyl ammonium bromide (DDAB) and sodium dodecyl sulfate (SDS, anionic) on the surface properties of a bituminous coal and its molybdenum and iron uptake from solution. In the previous report, it was shown that molybdenum loading onto the coal was enhanced by preadsorption of DDAB. The optimum concentration of this surfactant for effective adsorption of molybdenum at the natural pH of the coal slurry has been determined to be in the 0.1 to 0.25 M range. Preadsorption of SDS onto the coal was found to increase the uptake of iron by the coal; iron loading increased with increase in the concentration of the catalyst precursor. This observation is attributed to the increase in the negative surface charge properties of the coal with increase in the concentration of the surfactant. The results of the study show that DDAB enhances the adsorption of molybdenum whereas SDS is more effective for iron loading onto Illinois No. 6 (DECS-24) coal.
A novel approach to highly dispersing catalytic materials in coal for gasification. Second quarterly report, January 1, 1990--March 31, 1990
This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, a subbituminous, and a bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. Zeta potential studies show that the surfaces of the lignite are negatively charged between about pH2 to 11, the negative charge density increasing with increase in pH. Highly alkaline media promoted calcium adsorption due to high negative charge on the coal, while calcium uptake was inhibited in strongly acidic solutions.
Corrosion testing of stainless steel-zirconium metal waste form.
Stainless steel-zirconium (SS-Zr) alloys are being considered as waste forms for the disposition of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The waste forms contain irradiated cladding hulls, components of the alloy fuel, noble metal fission products, and actinide elements. The baseline waste form is a stainless steel-15 wt% zirconium (SS-15Zr) alloy. This article presents microstructure and some of the corrosion studies being conducted on the waste form alloys. Electrochemical corrosion, immersion corrosion, and vapor hydration tests have been performed on various alloy compositions to evaluate corrosion behavior and resistance to selective leaching of simulated fission products. The SS-Zr waste forms are successful at the immobilization and retention of fission products and show potential for acceptance as high-level nuclear waste forms.
Electrochemical corrosion testing of metal waste forms
Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys.
Development, Demonstration, Testing, and Evaluation Efforts Associated with the Oak Ridge Reservation`s Land Disposal Restrictions Federal Facility Compliance Agreement
On June 12, 1992, the U. S. Department of Energy Oak Ridge Operations Office and the U. S. Environmental Protection Agency (EPA) Region IV signed a Federal Facility Compliance Agreement (FFCA) to regulate the treatment of wastes governed by the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA). Compliance Requirement 5 of the agreement states that `. . . DOE shall submit to EPA for review and approval a plan for the treatment of the LDR prohibited wastes identified in Appendices 1B, 2B, and 3B. This plan must identify the treatment strategy for such wastes to meet LDR treatment standards and must include a schedule, not to exceed two (2) years after the submittal of this plan (i.e., March 1995), for the evaluation and prioritization of treatment method options, treatability studies, if required, and technology development. The FFCA divided the mixed wastes currently stored on the Oak Ridge Reservation (ORR) into two categories. Appendix A listed those wastes for which existing treatment methods and facilities exist. Appendix B listed wastes for which no identified treatment methods or facilities exist on the ORR.
Model Etch Profiles for Ion Energy Distribution Functions in an Inductively Coupled Plasma Reactor
Rectangular trench profiles are modeled with analytic etch rates determined from measured ion distribution functions. The pattern transfer step for this plasma etch is for trilayer lithography. Argon and chlorine angular ion energy distribution functions measured by a spherical collector ring analyzer are fit to a sum of drifting Maxwellian velocity distribution functions with anisotropic temperatures. The fit of the model ion distribution functions by a simulated annealing optimization procedure converges adequately for only two drifting Maxwellians. The etch rates are proportional to analytic expressions for the ion energy flux. Numerical computation of the etch profiles by integration of the characteristic equations for profile points and connection of the profiles points is efficient.
The Nimrod computational workbench: a case study in desktop metacomputing
The coordinated use of geographically distributed computers, or metacomputing, can in principle provide more accessible and cost- effective supercomputing than conventional high-performance systems. However, we lack evidence that metacomputing systems can be made easily usable, or that there exist large numbers of applications able to exploit metacomputing resources. In this paper, we present work that addresses both these concerns. The basis for this work is a system called Nimrod that provides a desktop problem-solving environment for parametric experiments. We describe how Nimrod has been extended to support the scheduling of computational resources located in a wide-area environment, and report on an experiment in which Nimrod was used to schedule a large parametric study across the Australian Internet. The experiment provided both new scientific results and insights into Nimrod capabilities. We relate the results of this experiment to lessons learned from the I-WAY distributed computing experiment, and draw conclusions as to how Nimrod and I-WAY- like computing environments should be developed to support desktop metacomputing.
Characterization plan for Hanford spent nuclear fuel
Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF.
Development of a stable cobalt-ruthenium Fischer-Tropsch catalyst. Technical progress reports No. 7 and 8, April 1, 1991--September 30, 1991
The objective of this contract is to examine the relationship between catalytic properties and the function of cobalt Fischer-Tropsch catalysts and to apply this fundamental knowledge to the development of a stable cobalt-based catalyst with a low methane-plus-ethane selectivity for use in slurry reactors. An experimental cobalt catalyst 585R2723 was tested three times in the fixed-bed reactor. The objective of the tests was to identify suitable testing conditions for screening catalyst. The {alpha}-alumina was determined to be a suitable diluent medium for controlling the catalyst bed temperature close to the inlet temperature. With 13 g of catalyst and 155 g of diluent, the catalyst maximum temperature were within 2{degree}C from the inlet temperatures. As a result of this work, 210{degree}C and 21 atm were shown to result in low methane selectivity and were used as initial conditions in the catalyst screening test. Ethane, which along with methane is undesirable, is typically produced with low selectivity and follows the same trend as methane. Other work reported here indicated that methane selectivity increases with increasing temperature but is not excessively high at 230{degree}C. Consequently, the catalyst screening test should include an evaluation of the catalyst performance at 230{degree}C. During Run 67, the increase in temperature from 210{degree}C to 230{degree}C was initiated at 30 hours on-stream.
The development of precipitated iron catalysts with improved stability; Final report, September 1987--September 1992
Precipitated iron catalysts are expected to be used in next generation slurry reactors for large-scale production of transportation fuels from synthesis gas. These reactors are expected to operate at higher temperatures and lower H{sub 2}:CO ratios relative to the Sasol Arge reactor (Table 1A). The feasibility of using iron catalysts has been demonstrated under relatively mild Arge-type conditions but not under more severe slurry conditions. Possibly, an improvement in catalytic stability will be needed to make iron catalysts suitable for slurry operation. This program was aimed at identifying the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and use of these chemical principles in the design of more stable catalysts. A new precipitated Fe catalyst was developed in this program for slurry reactor operation. The new Fe catalyst is predicted to perform slightly below the performance targets for slurry bubble column operation. Stability targets appear to be achievable. This catalyst did not noticeably deactivate during 1,740 hours on-stream. Compared to the selectivity target, an excess of 2% C{sub 1} + C{sub 2} was formed at 265{degrees}C. Based on the initial catalyst inventory in the autoclave, the catalyst seems to be short of the activity target by a factor of 1.8 at 265{degrees}C and 1.3 at 275{degrees}C. However, actual specific activities are likely to be closer to target because of catalyst inventory loss across the filter during the run and because catalytic activities were underestimated at low conversions.
Theory of high-{Tc} superconducting cuprates based on experimental evidence
A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of {Tc}, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc.
Chronic lung injury risk estimates for urban areas having ozone patterns similar to those in the Northeast
This paper describes the approach and result of an assessment of health risks associated with long-term exposure to ozone. The health endpoint of interest is the probability of formation of mild lesions in the centriacinar region of the lung among children living in New York City. The risk model incorporates an exposure model and a health model. The exposure model is preliminary results of the probabilistic NAAQS Exposure Model (P-NEM) for ozone, and the health model is the judgments of active researchers about the likelihood of formation of ozone-induced lesions in the human lung. Children and New York City were chosen as the population and city of interest because it is believed that children are more sensitive to ozone than any other group of people, and New York City is more representative of other urban areas than Los Angeles, the other city of which P-NEM exposure results are available. Risk results are presented for ten exposure distributions generated by P-NEM, two air quality scenarios (``as-is`` and ``attainment``), and two exposure periods (1 and 10 ozone seasons). The results vary across experts, are not very sensitive to variations in P-NEM exposure distributions, are lower for attainment conditions than as-is conditions, and are lower for 1 season of exposure than 10 seasons. Although these results are specific to children living in areas having exposure patterns similar to those found in the Northeast, they are fairly representative of results for outdoor workers in the Northeast and Southern California and for children in Southern California. The reason for this is that many experts believe that children and outdoor workers respond in a similar fashion to the given exposure patterns, or that exposure patterns in the Northeast and Southern California are similar. Some experts held both of these beliefs. These results should help policymakers evaluate …
Preconditioned gradient methods for sparse linear systems for very `large structural` problems
This paper deals with background and practical experience with preconditioned gradient methods for sparse linear systems for `very large` structural problems. The conjugate gradient method with diagonal preconditioning (CG/D) is demonstrated to substantially increase the size of structural problems that can be analyzed, significantly reduce computer storage requirements, and cut computing cost; thus allowing for much more detailed modeling and increased engineering efficiency. For one case for a structural system with 396,087 unknowns, the conjugate gradient method with diagonal preconditioning is demonstrated to be a factor of sixty faster than the direct method. For certain problems, however, the number of iterations required by the CG/D method is excessive and improved methods are needed. A stand-alone iterative solver research computer program was developed to evaluate the merits of various matrix preconditioners. A matrix preconditoner based on a shifted incomplete Cholesky factorization algorithm was demonstrated to be superior to other choices. The stand-alone program incorporates an effective data management strategy which utilizes disk and solid state auxiliary computer storage devices to make it possible to efficiently solve excessively large structural problems on state-of-the-art vector and parallel computers. The background of gradient methods, algorithms for their implementation, and practical experience in their applications to structural problems are presented.
Hybrid and conventional hydrogen engine vehicles that meet EZEV emissions
In this paper, a time-dependent engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many experimental points obtained in a recent evaluation of a hydrogen research engine. A The validated engine model is then used to calculate fuel economy and emissions for three hydrogen-fueled vehicles: a conventional, a parallel hybrid, and a series hybrid. All vehicles use liquid hydrogen as a fuel. The hybrid vehicles use a flywheel for energy storage. Comparable ultra capacitor or battery energy storage performance would give similar results. This paper analyzes the engine and flywheel sizing requirements for obtaining a desired level of performance. The results indicate that hydrogen lean-burn spark-ignited engines can provide a high fuel economy and Equivalent Zero Emission Vehicle (EZEV) levels in the three vehicle configurations being analyzed.
A hybrid vehicle evaluation code and its application to vehicle design. Revision 2
This paper describes a hybrid vehicle simulation model which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates in batch mode with all the vehicle information stored in data files. The code calculates power train dimensions, fuel economy for three driving schedules, time for 0-96 km/h at maximum acceleration, hill climbing performance, and pollution generation rates. This paper also documents the application of the code to a hybrid vehicle that utilizes a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine efficiency, accessory load, and flywheel efficiency. The code also calculates the minimum flywheel energy and power to obtain a desired performance. The hydrogen hybrid vehicle analyzed in the paper has a range of 480 km (300 miles), with a predicted gasoline equivalent fuel efficiency of 33.7 km/liter (79.3 mpg).
Optimum flywheel sizing for parallel and series hybrid vehicles
Flywheels have the possibility of providing high turnaround efficiency and high specific power output. These characteristics are very important for the successful manufacture of parallel and series hybrid vehicles, which have the potential for providing high fuel economy and very low emissions with range and performance comparable to today`s light-duty vehicles. Flywheels have a high specific power output, but relatively low specific energy output. Therefore, it is of importance to determine energy and power requirements for flywheels applied to light-duty vehicles. Vehicle applications that require an energy storage system with high power and low energy are likely to benefit from a flywheel. In this paper, a vehicle simulation code and a flywheel model are applied to the calculation of optimum flywheel energy storage capacity for a parallel and a series hybrid vehicle. A conventional vehicle is also evaluated as a base-case, to provide an indication of the fuel economy gains that can be obtained with flywheel hybrid vehicles. The results of the analysis indicate that the optimum flywheel energy storage capacity is relatively small. This results in a low weight unit that has a significant power output and high efficiency. Emissions generated by the hybrid vehicles are not calculated, but have the potential of being significantly lower than the emissions from the conventional car.
Plutonium recovery from spent reactor fuel by uranium displacement
This report discusses a process for separating uranium values and transuranic values from fission products containing rare earth values when the values which are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is re-established.
Magnesium transport extraction of transuranium elements from LWR fuel
This report discusses a process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl{sub 2} and a U-Fe alloy containing not less than about 84% by weight uranium at a temperature in the range of from about 800{degrees}C to about 850{degrees}C to produce additional uranium metal which dissolves in the U-Fe alloy raising the uranium concentration and having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein. The CaCl{sub 2} having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO{sub 2}. The Ca metal and CaCl{sub 2} is recycled to reduce additional oxide fuel. The U-Fe alloy having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with Mg metal which takes up the actinide and rare earth fission product metals. The U-Fe alloy retains the noble metal fission products and is stored while the Mg is distilled and recycled leaving the transuranium actinide and rare earth fission products isolated.
Back to Top of Screen