UNT Libraries Government Documents Department - 71 Matching Results

Search Results

System design description for sampling sludge in K basins fuel storage canisters
This System Design Description provides: (1) statements of the Spent Nuclear Fuel Projects (SNFP) needs requiring sampling of canister sludge in the K East and K West Basins, (2) the sampling equipment system functions and requirements, (3) a general work plan and the design logic being followed to develop the equipment, and (4) a summary description of the design for the sampling equipment.
Heavy ion fusion experiments at LLNL
We review the status of the experimental campaign being carried out at Lawrence Livermore National Laboratory, involving scaled investigations of the acceleration and transport of space-charge dominated heavy ion beams. The ultimate goal of these experiments is to help lay the groundwork for a larger scale ion driven inertial fusion reactor, the purpose of which is to produce inexpensive and clean electric power.
Physics design and scaling of recirculating induction accelerators: from benchtop prototypes to drivers
Recirculating induction accelerators (recirculators) have been investigated as possible drivers for inertial fusion energy production because of their potential cost advantage over linear induction accelerators. Point designs were obtained and many of the critical physics and technology issues that would need to be addressed were detailed. A collaboration involving Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory researchers is now developing a small prototype recirculator in order to demonstrate an understanding of nearly all of the critical beam dynamics issues that have been raised. We review the design equations for recirculators and demonstrate how, by keeping crucial dimensionless quantities constant, a small prototype recirculator was designed which will simulate the essential beam physics of a driver. We further show how important physical quantities such as the sensitivity to errors of optical elements (in both field strength and placement), insertion/extraction, vacuum requirements, and emittance growth, scale from small-prototype to driver-size accelerator.
Tank 241-AW-101, cores 132 and 139 analytical results for the final report
No abstract prepared.
Tank characterization report for single-shell tank 241-B-111
This tank characterization report for Tank 241-B-111 was initially released as PNL-10099. This document is now being released as WHC-SD- WM-ER-549 in order to accommodate internet publishing.
Test plan for high flux back washable filter at 105 KE fuel storage basin
This document describes the operational testing at the KE Basins planned for demonstrating and evaluating a high flux back washable filter. The document includes the description of the operational testing to be conducted, the samples and measurements to be taken, the sample analysis to be performed, and the use of the information obtained.
Hot conditioning equipment conceptual design report
This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.
Nuclear criticality project plan for the Hanford Site tank farms
The mission of this project is to provide a defensible technical basis report in support of the Final Safety Analysis Report (FSAR). This technical basis report will also be used to resolve technical issues associated with the nuclear criticality safety issue. The strategy presented in this project plan includes an integrated programmatic and organizational approach. The scope of this project plan includes the provision of a criticality technical basis supporting document (CTBSD) to support the FSAR as well as for resolution of the nuclear criticality safety issue. Specifically, the CTBSD provides the requisite technical analysis to support the FSAR hazard and accident analysis as well as for the determination of the required FSAR limits and controls. The scope of The CTBSD will provide a baseline for understanding waste partitioning and distribution phenomena and mechanistics for current operational activities inclusive of single-shell tanks, double-shell tanks, double-contained receiver tanks, and miscellaneous underground storage tanks.. Although the FSAR does not include future operational activities, the waste partitioning and distribution phenomena and mechanistics work scope identified in this project plan provide a sound technical basis as a point of departure to support independent safety analyses for future activities. The CTBSD also provides the technical basis for resolution of the technical issues associated with the nuclear criticality safety issue. In addition to the CTBSD, additional documentation will be required to fully resolve U.S. Department of Energy-Headquarters administrative and programmatic issues. The strategy and activities defined in this project plan provide a CTBSD for the FSAR and for accelerated resolution of the safety issue in FY 1996. On April 30, 1992, a plant review committee reviewed the Final Safety Analysis Reports for the single-shell, double-shell, and aging waste tanks in light of the conclusions of the inadequate waste characterization with respect to fissile material. The review ...
K Basin sludge packaging design criteria (PDC) and safety analysis report for packaging (SARP) approval plan
This document delineates the plan for preparation, review, and approval of the Packaging Design Crieteria for the K Basin Sludge Transportation System and the Associated on-site Safety Analysis Report for Packaging. The transportation system addressed in the subject documents will be used to transport sludge from the K Basins using bulk packaging.
Point projection radiography with the FXI
Radiography techniques utilizing large area x-ray sources (typically {<=} 7 keV) and pinhole-imaging gated x-ray diagnostics have long been used at the Nova laser facility. However, for targets requiring higher energy x-ray backlighters (> 9 keV), low conversion efficiencies and pinhole losses combine to make this scheme unworkable. The technique of point projection radiography has been improved upon to make imaging at high x-ray energies feasible. In this scheme a {open_quotes}point{close_quotes} source of x-rays, usually a small diameter ({<=}25 {mu}m) fiber, is illuminated with a single, 100 ps pulse from the Nova laser. A gated x-ray imager with a 500 ps electronic gate width is used to record the projected image. The experimental challenges this technique presents and experimental results will be discussed.
CASTOR GSF packaging design criteria
Encapsulated vitrified materials (Isotopic Heat Sources) are currently stored in the Pacific Northwest National Laboratories (PNNL) 324 Building located in the 300 Area. As part of the 324 Building transition program, the vitrified material, encapsulated in stainless steel canisters, must be removed. These canisters were originally intended to be used by the German government, but are no longer desired. As part of an agreement with the German government, the Germans are providing the U.S. Department of Energy (DOE) with six (6) CASTOR GSF and four (4) GNS-12 casks.The canisters will be transported onsite in CASTOR GSF and GNS-12 casks for interim storage until final disposition of the material is determined.
Project management plan, project W-259, ``T Plant secondary containment and leak detection upgrades``
This transmission is for WHC formal release of the Project Management Plan for Project W-259; `T Plant Secondary Containment Upgrades`. T Plant is the decontamination facility for the Hanford Site, requiring upgrading to the facilities to ensure operations are in compliance with regulatory standards for secondary containment of the environmental restoration mission and waste management operations for the Hanford Site. This project supports upgrades to numerous utilities, tanks, and piping systems to meet the State of Washington and Federal Environmental Regulations.
Nuclear Criticality Safety Department Qualification Program
The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSD technical and managerial qualification as required by the Y-1 2 Training Implementation Matrix (TIM). This Qualification Program is in compliance with DOE Order 5480.20A and applicable Lockheed Martin Energy Systems, Inc. (LMES) and Y-1 2 Plant procedures. It is implemented through a combination of WES plant-wide training courses and professional nuclear criticality safety training provided within the department. This document supersedes Y/DD-694, Revision 2, 2/27/96, Qualification Program, Nuclear Criticality Safety Department There are no backfit requirements associated with revisions to this document.
Nuclear criticality safety department training implementation
The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document.
Operations and maintenance manual for the LDUA operations control trailer
The Light Duty Utility Arm (LDUA) Operations Control Trailer has completed testing and is ready for operation. This document defines the requirements applicable to the operation and maintenance of the Operations Control Trailer.
Literature survey of tritiated waste characterization and disposal
Characterizing, handling, and storing tritiated waste is challenging because of the physical and chemical properties of tritium. Tritium is soluble in many materials, including structural materials such as, stainless steel, structural steel, polymers, concrete and paints. Tritium permeates rapidly into these materials compared to other species, and so parts exposed to tritium are normally contaminated to some degree throughout the bulk. The relatively low kinetic energy of the {beta}-decay causes detecting tritium anywhere but very near the surface of materials to be impossible, because the {beta}-particle is absorbed by the material. Tritium readily exchanges with hydrogen in water vapor, and the resulting tritiated water can permeate polymers, concrete, oil, and the oxide surface films normally present on metals. Most of the tritium contamination in structural metals resides in the surface oxide film and in organic films at the surface, when metals are exposed to tritium at ambient temperature and pressure, whether the exposure is to gas or tritiated water. The most reliable method of assaying tritium is to dissolve samples in a proper liquid scintillant and use {beta}-scintillation counting. Other methods that require less time or are non-destructive (such as smear/counting) are significantly less reliable, but they can be used for routine waste characterization if sample dissolution/liquid scintillation counting is regularly employed to benchmark them.
WATER SUPPLY ANALYSIS
This analysis defines and evaluates the surface water supply system from the existing J-13 well to the North Portal. This system includes the pipe running from J-13 to a proposed Booster Pump Station at the intersection of H Road and the North Portal access road. Contained herein is an analysis of the proposed Booster Pump Station with a brief description of the system that could be installed to the South Portal and the optional shaft. The tanks that supply the water to the North Portal are sized, and the supply system to the North Portal facilities and up to Topopah Spring North Ramp is defined.
Auburn Dam on the American River: Fact Sheet
For more than 30 years, Congress has debated constructing a dam on the American River near Auburn, California. The Army Corps of Engineers recently identified three alternatives for flood control, with the Division office's preferred plan calling for construction of a 508-foot-high detention dam. Currently, two bills address the issue: H.R. 3270 supports construction of the dam, while H.R. 2951 opposes construction of any structure on the North Fork of the American River.
Office of Fusion Energy computational review
The LLNL MFE Theory and Computations Program supports computational efforts in the following areas: (1) Magnetohydrodynamic equilibrium and stability; (2) Fluid and kinetic edge plasma simulation and modeling; (3) Kinetic and fluid core turbulent transport simulation; (4) Comprehensive tokamak modeling (CORSICA Project) - transport, MHD equilibrium and stability, edge physics, heating, turbulent transport, etc. and (5) Other: ECRH ray tracing, reflectometry, plasma processing. This report discusses algorithm and codes pertaining to these areas.
Tank characterization report for single-shell tank 241-B-201
This tank characterization report for Tank 241-B-201 was initially released as PNL-10100. This document is now being released as WHC-SD- WM-ER-550 in order to accommodate internet publishing.
Pakistan Aid Cutoff: U.S. Nonproliferation and Foreign Policy Considerations
No Description Available.
Toxic substances from coal combustion -- Forms of occurrence analyses. Technical progress report, April 30--November 1, 1996
The overall objective of this project is to provide analytical support for the Physical Sciences, Inc. (PSI) effort being performed under a DOE Contract. The Pittsburgh, Elkhorn/Hazard, and Illinois No. 6 program coals have been examined to determine the mode of occurrence of selected trace elements using scanning electron microscopy, microprobe analysis, and experimental leaching procedures. Preliminary microprobe data indicates that the arsenic content of pyrite grains in the Illinois No. 6 (0.0--0.027 ppm As) and Pittsburgh (0.0--0.080 ppm As) coals is similar. Pyrite grains observed in the Elkhorn/Hazard coal generally have arsenic concentrations (0.0--0.272 wt.% As) that are slightly higher than those of the Pittsburgh or Illinois No. 6 coals. One pyrite grain observed in the Elkhorn/Hazard coal contained much higher levels of arsenic (approximately 2 wt.% As). Preliminary microprobe analyses and data from leaching experiments indicate the association of arsenic with pyrite in the Pittsburgh and Illinois No. 6 coals. Leaching data for arsenic in the Elkhorn/Hazard coal, in contrast, is inconclusive and additional data are needed before a definite determination can be made.
Comprehensive supernate treatment
This task involves the recovery of the liquid (supernatant or supernate) portions of Oak Ridge National Laboratory (ORNL) Melton Valley Storage Tank waste in a hot cell and treatment of the supernate to separate and remove the radionuclides. The supernate is utilized in testing various sorbent materials for removing cesium, strontium, and technetium from the highly alkaline, saline solutions. Batch tests are used to evaluate and select the most promising materials for supernate treatment to reduce the amount of waste for final disposal. Once the sorbents have been selected based on the results from the batch tests, small column tests are made to verify the batch data. Additional data from these tests can be used for process design. The sorption tests emphasize evaluation of newly developed sorbents and engineered forms of sorbents. Methods are also evaluated for recovering the radionuclides from the sorbents, including evaluating conditions for eluting ion exchange resins. A final report will summarize the results and compare the results with those of other investigators, along with recommendations for separating and concentrating radionuclides from DOE storage tank supernates at Oak Ridge and other sites. Documentation of the data and the significance of the findings will be compared, and recommendations will be provided to likely users of the data in EM-30. This program also provides input to the supernate treatment process demonstration projects at ORNL.
Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures. Phase 3: Reproducibility and discrimination testing. Final report
In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. This report presents the results of phase three concerning the reproducibility and discrimination testing.
222-S Laboratory analytical report for tank 241-C-106, grab samples 6C-96-1 through 6C-96-16 {ampersand} 6C-96-17-FB
This document is the analytical report for grab samples 6C-96-1through 6C-96-16 and 6C-96-17-FB from tank 241-C-106.
Acceptance test report for W-030 monitor and control system (MCS) software
This report documents the test performed under `Acceptance Test Procedure WHC-SD-W030-ATP-011, Rev. 0`, for `Project W-030 Tank Farm Ventilation Upgrade`. This report covers testing of the Software Control Logic for the MICON Monitoring and Control System (MCS).
First results of a polychromatic artificial sodium star for the correction of tilt
This paper presents the first results of a joint experiment carried out at Lawrence Livermore National Laboratory during January, 1996. Laser and optical systems were tested to provide a polychromatic artificial sodium star for the correction of tilt. This paper presents the results of that experiment.
Probabilistic model, analysis and computer code for take-off and landing related aircraft crashes into a structure
A methodology is presented that allows the calculation of the probability that any of a particular collection of structures will be hit by an aircraft in a take-off or landing related accident during a specified window of time with a velocity exceeding a given critical value. A probabilistic model is developed that incorporates the location of each structure relative to airport runways in the vicinity; the size of the structure; the sizes, types, and frequency of use of commercial, military, and general aviation aircraft which take-off and land at these runways; the relative frequency of take-off and landing related accidents by aircraft type; the stochastic properties of off-runway crashes, namely impact location, impact angle, impact velocity, and the heading, deceleration, and skid distance after impact; and the stochastic properties of runway overruns and runoffs, namely the position at which the aircraft exits the runway, its exit velocity, and the heading and deceleration after exiting. Relevant probability distributions are fitted from extensive commercial, military, and general aviation accident report data bases. The computer source code for implementation of the calculation is provided.
B Plant Transition Project Management Plan
The mission of the B Plant Transition Project is to place B Plant and its ancillary facilities (refeffed to as B Plant throughout this document) in a safe and stable condition which requires minimal long term surveillance and maintenance (S&M), thereby reducing the risks associated with the current radiological and chemical inventory and the costs for S&M until disposition. Transition may include activities such as removal of stored radioactive and hazardous materials, safe shutdown of support systems such as electrical circuits and ventilation, and installation of new or modified systems required to support S&M for a 10 year period. The goal of this Project is to complete B Plant transition activities by September 30, 1998. During transition, the Waste Encapsulation and Storage Facility will be isolated from B Plant for stand alone operation. Upon completion of transition, B Plant will be turned over to the Office of Environmental Restoration (EM-40) for the S&M phase of B Plant decommissioning.
The World Food Summit
Governments participating in the 1996 World Food Summit will examine how to deal with world hunger and malnutrition and achieve the goal of food security for all. There is broad agreement on the desirability of the Summit's goal, but controversy has developed over such issues as the relationship of trade liberalization and food security, the advisability of declaring a legal right to food, the link between population stabilization and reproductive health and food security, and responsibility within the UN system for Summit follow-up.
Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Technical progress report
The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. This is the third quarterly technical progress report for the project. Significant technical achievements accomplished include the drilling of four horizontal wells (two producers and two steam injectors) utilizing a new and lower cost drilling program, the drilling of five observation wells to monitor the horizontal steamflood pilot, the installation of a subsurface harbor channel crossing for delivering steam to an island location, and a geochemical study of the scale minerals being created in the wellbore. Cyclic steam injection into the two horizontal injection wells began in mid-December 1995 utilizing the new 2400 ft steam line under the Cerritos channel and the wells will be placed on production in May. Cyclic steam injection into the two horizontal producers will start in May. Work on the basic reservoir engineering is expected to be completed in March 1996. The deterministic geologic model was improved to add eight layers to the previous ten.
Plutonium pit manufacturing unit process separation options for rapid reconstitution, a joint position paper of Lawrence Livemore National Laboratory and Los Alamos National Laboratory
This document addressed technical issues regarding the manufacturing processes involved in making plutonium pits. It addresses acceptable approaches from a technical standpoint as to how the manufacturing processes can be separated and distributed among different manufacturing sites. Site selections, costs, and intra-site transfers are not addressed in this document.
Cost effective machining and inspection of structural ceramics. CRADA final report for CRADA Number Y-1292-0088
This CRADA supports the objective of demonstrating feasibility and minimizing manufacturing costs associated with the use of ceramic components in a heavy duty diesel engine manufactured by Detroit Diesel Corporation (DDC). Studies were conducted to evaluate existing, known data for ceramic material, and to identify additional data needed to better characterize a valve of ceramic composition. Tests were conducted to provide important information required for redesign of existing metal valves and other engine head components. A vendor was selected by DDC to produce the valve shapes for testing and Lockheed Martin Energy Systems (LMES) provided design modeling/analysis support. The effort also included the development of a bench-test apparatus to simulate the environment of a valve in operation that provided material data and confirmation of analytical results.
Summary of radioactive solid waste received in the 200 Areas during calendar year 1995
Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1995. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, liquid waste data are not included in this document. This annual report provides a summary of the radioactive solid waste received in the both the 200-East and 200-West Areas during the calendar year 1995.
Tank waste remediations system controlled, clean, and stable functions and endpoint criteria for single-shell tank farms
This document provides functions and endpoint criteria to be used for transition of the Single-Shell Tank Farms to the Controlled, Clean and Stable endstate.
Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996
The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.
Treatability studies of actual listed waste sludges from the Oak Ridge Reservation (ORR)
Oak Ridge National Laboratory (ORNL) and Savannah River Technology Center (SRTC) are investigating vitrification for various low-level and mixed wastes on the Oak Ridge Reservation (ORR). Treatability studies have included surrogate waste formulations at the laboratory-, pilot-, and field-scales and actual waste testing at the laboratory- and pilot-scales. The initial waste to be processing through SRTC`s Transportable Vitrification System (TVS) is the K-1407-B and K-1407-C (B/C) Pond sludge waste which is a RCRA F-listed waste. The B/C ponds at the ORR K-25 site were used as holding and settling ponds for various waste water treatment streams. Laboratory-, pilot-, and field- scale ``proof-of-principle`` demonstrations are providing needed operating parameters for the planned field-scale demonstration with actual B/C Pond sludge waste at ORR. This report discusses the applied systems approach to optimize glass compositions for this particular waste stream through laboratory-, pilot-, and field-scale studies with surrogate and actual B/C waste. These glass compositions will maximize glass durability and waste loading while optimizing melt properties which affect melter operation, such as melt viscosity and melter refractory corrosion. Maximum waste loadings minimize storage volume of the final waste form translating into considerable cost savings.
Final closure cover for a Hanford radioactive mixed waste disposal facility
This study provides a preliminary design for a RCRA mixed waste landfill final closure cover. The cover design was developed by a senior class design team from Seattle University. The design incorporates a layered design of indigenous soils and geosynthetics in a layered system to meet final closure cover requirements for a landfill as imposed by the Washington Administrative Code WAC-173-303 implementation of the Resource Conservation and Recovery Act.
Microbiologically influenced corrosion. Final report for fiscal year 1995
Microbiologically influenced corrosion (MIC) is a serious concern when considering measures to guard against long-term corrosion of waste package containers at Yucca Mountain. An experimental program has been initiated to gain a better fundamental understanding of MIC in repository environments. Some engineering objectives will be achieved during the investigation: a reproducible apparatus and procedure for electrochemical monitoring of MIC will be developed; the most aggressive combinations of bacteria will be determined, and the MIC resistance of various candidate alloys for the multipurpose container (MPC) will be measured.
XUV probing of laser imprint in a thin foil using an x-ray laser backlighter
For direct drive ICF, a capsule is imploded by directly illuminating the surface with laser light. Beam smoothing and uniformity of illumination affect the seeding of instabilities at the ablation front. We have developed a technique for studying the imprint of a laser beam on a thin foil using an x-ray laser as an XUV backlighter. We use multilayer XUV optics to relay the x-ray laser onto the directly driven foil, and then to image the foil modulation onto a CCD camera. This technique allows us to measure small fractional variations in the foil thickness. We have measured the modulation due to imprint from a low intensity 0.35 pm drive beam incident on a 3 {mu}m Si foil using an yttrium x-ray laser on Nova. We present results from a similar technique to measure the imprinted modulation due to a low intensity 0.53 {mu}m drive beam incident on a 2 {mu}m Al foil using a germanium x-ray laser at the Vulcan facility.
X-ray backlit imaging measurement of in-flight pusher density for an indirect drive capsule implosion
Both the efficiency of an implosion and the growth rate of hydrodynamic instability increase with the aspect ratio of an implosion. In order to study the physics of implosions with high Rayleigh-Taylor growth factors, we use doped ablators which should minimize x-ray preheat and shell decompression, and hence increase in-flight aspect ratio. We use x-ray backlighting techniques to image the indirectly-driven capsules. We record backlit 4.7 keV images of the full capsule throughout the implosion phase with 55 ps and 15 {mu}m resolution. We use these images to measure the in-flight aspect ratios for doped ablators, and we inferred the radial density profile as a function of time by Abel inverting the x-ray transmission profiles.
Spray cooling heat-transfer with subcooled trichlorotrifluoroethane (Freon-113) for vertical constant heat flux surfaces
Experiments were done using subcooled Freon-113 sprayed vertically downward. Local and average heat transfers were investigated fro Freon-113 sprays with 40 C subcooling, droplet sizes 200-1250{mu}m, and droplet breakup velocities 5-29 m/s. Full-cone type nozzles were used to generate the spray. Test assemblies consisted of 1 to 6 7.62 cm vertical constant heat flux surfaces parallel with each other and aligned horizontally. Distance between heated surfaces was varied from 6.35 to 76.2 mm. Steady state heat fluxes as high as 13 W/cm{sup 2} were achieved. Dependence on the surface distance from axial centerline of the spray was found. For surfaces sufficiently removed from centerline, local and average heat transfers were identical and correlated by a power relation of the form seen for normal-impact sprays which involves the Weber number, a nondimensionalized temperature difference, and a mass flux parameter. For surfaces closer to centerline, the local heat transfer depended on vertical location on the surface while the average heat transfer was described by a semi-log correlation involving the same parameters. The heat transfer was independent of the distance (gap) between the heated surfaces for the gaps investigated.
Use of strain-annealing to evolve the grain boundary character distribution in polycrystalline copper
We have used a two-step (low and high temperature) strain-annealing process to evolve the grain boundary character distribution (GBCD) in fully recrystallized oxygen-free electronic (OFE) Cu bar that was forged and rolled. Orientation imaging microscopy has been used to characterize the GBCD after each step in the processing. The fraction of special grain boundaries was {similar_to}70% in the starting recrystallized material. Three different processing conditions were employed: high, moderate, and low temperature. The high-temperature process resulted in a reduction in the fraction of special GBs while both the lower temperature processes resulted in an increase in special fraction up to 85%. Further, the lower temperature processes resulted in average deviation angles from exact misorientation, for special boundaries, that were significantly smaller than observed from the high temperature process. Results indicate the importance of the low temperature part of the two-step strain-annealing process in preparing the microstructure for the higher temperature anneal and commensurate increase in the special fraction.
Investigation on the co-precipitation of transuranium elements from alkaline solutions by the method of appearing reagents
Highly alkaline radioactive waste solutions originating from production of plutonium for military purposes are stored in underground tanks at the U.S. Department of Energy Hanford Site. The purification of alkaline solutions from neptunium and plutonium is important in the treatment and disposal of these wastes. This report describes scoping tests with sodium hydroxide solutions, where precipitation techniques were investigated to perform the separation. Hydroxides of iron (III), manganese (II), cobalt (II, III), and chromium (III); manganese (IV) oxide, and sodium uranate were investigated as carriers. The report describes the optimum conditions that were identified to precipitate these carriers homogeneously throughout the solution by reductive, hydrolytic, or catalytic decomposition of alkali-soluble precursor compounds by a technique called the Method of Appearing Reagents. The coprecipitation of pentavalent and hexavalent neptunium and plutonium was investigated for the candidate agents under optimum conditions and is described in this report along with the following results. Plutonium coprecipitated well with all tested materials except manganese (IV) oxide. Neptunium only coprecipitated well with uranate. The report presents a hypothesis to explain these behaviors. Further tests with more complex solution matrices must be performed.
Calculation notes that support accident scenario and consequence determination of a waste tank criticality
The purpose of this calculation note is to provide the basis for criticality consequences for the Tank Farm Safety Analysis Report (FSAR). Criticality scenario is developed and details and description of the analysis methods are provided.
The effects of load drop, uniform load and concentrated loads on waste tanks
This document provides the supporting calculations performed by others specifically for the TWRS FSAR and more detailed summaries of the important references issued in the past regarding the effects of various loads.
Test report for drill string seal pressure test
A basic question was asked concerning the drill string which is used in rotary Mode coring operations: ``...what is the volume leak rate loss in a drill rod string under varying condiditons of the joint boxes and pins being either dry or coated with lubricant...``. A Variation of this was to either have an o-ring installed or absent on the drill rod that was grooved on the pin. A series of tests were run with both the o-ring grooved Longyear drill rod and the plain pin end rod manufactured by Diamond Drill. Test results show that drill rod leakage of both types is lowered dramatically when thread lubricant is applied to the threaded joints and the joints made up tight. The Diamond Drill rod with no o-ring groove has virtually no leakage when used with thread lubricant and the joints are properly tightened.
Final characterization of aqueous waste from B-Plant tank 25-2
This report documents the final characterization activities for B- Plant tank 25-2.
Lightweight pressure vessels and unitized regenerative fuel cells
Energy storage systems have been designed using lightweight pressure vessels with unitized regenerative fuel cells (URFCs). The vessels provide a means of storing reactant gases required for URFCs; they use lightweight bladder liners that act as inflatable mandrels for composite overwrap and provide a permeation barrier. URFC systems have been designed for zero emission vehicles (ZEVs); they are cost competitive with primary FC powered vehicles that operate on H/air with capacitors or batteries for power peaking and regenerative braking. URFCs are capable of regenerative braking via electrolysis and power peaking using low volume/low pressure accumulated oxygen for supercharging the power stack. URFC ZEVs can be safely and rapidly (<5 min.) refueled using home electrolysis units. Reversible operation of cell membrane catalyst is feasible without significant degradation. Such systems would have a rechargeable specific energy > 400 Wh/kg.
Assessment of the project W-030 ventilation system following a hypothetical gas release event
This document is an executive summary of the testing, adjusting and balancing completed for Project W-112 for the HVAC systems. The actual results are document in the Acceptance Test Report.