UNT Libraries Government Documents Department - 913 Matching Results

Search Results

Scaled Experimental Modeling of VHTR Plenum Flows
Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.
Pressure-induced Breaking of Equilibrium Flux Surfaces in the W7AS Stellarator
Calculations are presented for two shots in the W7AS stellarator which differ only in the magnitude of the current in the divertor control coil, but have very different values of experimentally attainable β (<β> ≈ 2.7% versus <β> ≈ 1.8%). Equilibrium calculations find that a region of chaotic magnetic field line trajectories fills approximately the outer 1/3 of the cross-section in each of these configurations. The field lines in the stochastic region are calculated to behave as if the flux surfaces are broken only locally near the outer midplane and are preserved elsewhere. The calculated magnetic field line diffusion coefficients in the stochastic regions for the two shots are consistent with the observed differences in the attainable β, and are also consistent with the differences in the reconstructed pressure profiles.
Optical simulations of the ion beam emittance growth in different types of a gridded lens
N/A
FUTURE PLANS AT BNL: RHIC-II AND eRHIC.
The development of future facilities relevant to the study of deep inelastic scattering at BNL is described.
Measurement of the Lambda(b) lifetime in the exclusive decay Lambda(b) ---> J / psi Lambda
We have measured the {lambda}{sub b} lifetime using the exclusive decay {lambda}{sub b}{yields}J/{psi}{lambda}, based on 1.2 fb{sup -1} of data collected with the D0 detector during 2002-2006. From 171 reconstructed {lambda}{sub b} decays, where the J/{psi} and {lambda} are identified via the decays J/{psi}{yields}{mu}{sup +}{mu}{sup -} and {lambda}{yields}p{pi}, we measured the {lambda}{sub b} lifetime to be {tau}({lambda}{sub b})=1.218{sub -0.115}{sup +0.130}(stat){+-}0.042(syst) ps. We also measured the B{sup 0} lifetime in the decay B{sup 0}{yields}J/{psi}({mu}{sup +}{mu}{sup -})K{sub S}{sup 0}({pi}{sup +}{pi}{sup -}) to be {tau}(B{sup 0})=1.501{sub -0.074}{sup +0.078}(stat){+-}0.050(syst) ps, yielding a lifetime ratio of {tau}({lambda}{sub b})/{tau}(B{sup 0})=0.811{sub -0.087}{sup +0.096}(stat){+-}0.034(syst = )
Search for a Higgs boson produced in association with a Z boson in p anti-p collisions
We describe a search for the standard model Higgs boson with a mass of 105 GeV/c{sup 2} to 145 GeV/c{sup 2} in data corresponding to an integrated luminosity of approximately 450 pb{sup -1} collected with the D0 detector at the Fermilab Tevatron p{bar p} collider at a center-of-mass energy of 1.96 TeV. The Higgs boson is required to be produced in association with a Z boson, and the Z boson is required to decay to either electrons or muons with the Higgs boson decaying to a b{bar b} pair. The data are well described by the expected background, leading to 95% confidence level cross section upper limits {sigma}p{bar p} {yields} ZH x B(H {yields} b{bar b}) in the range of 3.1 pb to 4.4 pb.
Electric Transmission: Approaches for Energizing a Sagging Industry
This report discusses factors that have contributed to the lack of new transmission capacity and some of the resulting issues. This report reviews approaches being taken to address the lack of investment in transmission infrastructure and transmission congestion.
2006 Electrochemistry Gordon Research Conference - February 12-17-2006
This report is a descriptive journey of 2006 Electrochemistry Gordon Research Conference.
Polarization of J / psi and psi(2S) mesons produced in p anti-p collisions at s**(1/2) = 1.96-TeV
The authors have measured the polarizations of J/{psi} and {psi}(2S) mesons as functions of their transverse momentum p{sub T} when they are produced promptly in the rapidity range |y| &lt; 0.6 with p{sub T} {ge} 5 GeV/c. The analysis is performed using a data sample with an integrated luminosity of about 800 pb{sup -1} collected by the CDF II detector. For both vector mesons, they find that the polarizations become increasingly longitudinal as p{sub T} increases from 5 to 30 GeV/c. These results are compared to the predictions of non-relativistic quantum chromo-dynamics and other contemporary models. The polarizations of J/{psi} and {psi}(2S) mesons from B-hadron decays are also reported.
Search for heavy, long-lived particles that decay to photons at CDF II
The authors present the first search for heavy, long-lived particles that decay to photons at a hadron collider. They use a sample of {gamma} + jet + missing transverse energy events in p{bar p} collisions at {radical}s = 1.96 TeV taken with the CDF II detector. Candidate events are selected based on the arrival time of the photon at the detector. Using an integrated luminosity of 570 pb{sup -1} of collision data, they observe 2 events, consistent with the background estimate of 1.3 {+-} 0.7 events. While the search strategy does not rely on model-specific dynamics, they set cross section limits in a supersymmetric model with {tilde {chi}}{sub 1}{sup 0} {yields} {gamma}{tilde G} and place the world-best 95% C.L. lower limit on the {tilde {chi}}{sub 1}{sup 0} mass of 101 GeV/c{sup 2} at {tau}{sub {tilde {chi}}{sub 1}{sup 0}} = 5 ns.
Demonstration of Key Elements of a Dual Phase Argon Detection System Suitable for Measurement of Coherent Neutrino-Nucleus Scattering
This feasibility study sought to demonstrate several necessary steps in a research program whose ultimate goal is to detect coherent scattering of reactor antineutrinos in dual-phase noble liquid detectors. By constructing and operating a Argon gas-phase drift and scintillation test-bed, the study confirmed important expectations about sensitivity of these detectors, and thereby met the goals set forth in our original proposal. This work has resulted in a successful Lab-Wide LDRD for design and deployment of a coherent scatter detector at a nuclear reactor, and strong interest by DOE Office of Science. In recent years, researchers at LLNL and elsewhere have converged on a design approach for a new generation of very low noise, low background particle detectors known as two-phase noble liquid/noble gas ionization detectors. This versatile class of detector can be used to detect coherent neutrino scattering-an as yet unmeasured prediction of the Standard Model of particle physics. Using the dual phase technology, our group would be the first to verify the existence of this process. Its (non)detection would (refute)validate central tenets of the Standard Model. The existence of this process is also important in astrophysics, where coherent neutrino scattering is assumed to play an important role in energy transport within nascent neutron stars. The potential scientific impact after discovery of coherent neutrino-nuclear scattering is large. This phenomenon is flavor-blind (equal cross-sections of interaction for all three neutrino types), raising the possibility that coherent scatter detectors could be used as total flux monitors in future neutrino oscillation experiments. Such a detector could also be used to measure the flavor-blind neutrino spectrum from the next nearby (d {approx} 10kpc) type Ia supernova explosion. The predicted number of events [integrated over explosion time] for a proposed dual-phase argon coherent neutrino scattering detector is 10000 nuclear recoils/kton, compared to the estimated rate …
USING WET AIR OXIDATION TECHNOLOGY TO DESTROY TETRAPHENYLBORATE
A bench-scale feasibility study on the use of a Wet Air Oxidation (WAO) process to destroy a slurry laden with tetraphenylborate (TPB) compounds has been undertaken. WAO is an aqueous phase process in which soluble and/or insoluble waste constituents are oxidized using oxygen or oxygen in air at elevated temperatures and pressures ranging from 150 C and 1 MPa to 320 C and 22 MPa. The products of the reaction are CO{sub 2}, H{sub 2}O, and low molecular weight oxygenated organics (e.g. acetate, oxalate). Test results indicate WAO is a feasible process for destroying TPB, its primary daughter products [triphenylborane (3PB), diphenylborinic acid (2PB), and phenylboronic acid (1PB)], phenol, and most of the biphenyl byproduct. The required conditions are a temperature of 300 C, a reaction time of 3 hours, 1:1 feed slurry dilution with 2M NaOH solution, the addition of CuSO{sub 4}.5H{sub 2}O solution (500 mg/L Cu) as catalyst, and the addition of 2000 mL/L of antifoam. However, for the destruction of TPB, its daughter compounds (3PB, 2PB, and 1PB), and phenol without consideration for biphenyl destruction, less severe conditions (280 C and 1-hour reaction time with similar remaining above conditions) are adequate.
High Sensitivity Low Fluorescence Detection for Beryllium Particulates SBIR Phase I Final Report ER84587
Abstract: The technical objective in Phase I was to enhance the detection limit of beryllium using fluorescence system by a minimum factor of 10. This was to be achieved by modifying the chemistry and instrumentation. Both of these were completed independently. In each case we were able to lower the detection limit as desired. The objectives in Phase II are to adapt these changes for commercial activity (chemicals and instrument changes including automation).
A Search for electron neutrino appearance at the Delta m**2 ~ 1- eV**2 scale
The MiniBooNE Collaboration reports first results of a search for {upsilon}{sub e} appearance in a {upsilon}{sub {mu}} beam. With two largely independent analyses, we observe no significant excess of events above background for reconstructed neutrino energies above 475 MeV. The data are consistent with no oscillations within a two neutrino appearance-only oscillation model.
Smart Energy Management of Multiple Full Cell Powered Applications
In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.
Smart Energy Management of Multiple Full Cell Powered Applications
In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.
Influence of a Cerium Surface Treatment on the Oxidation Behavior of Cr2O3-Forming Alloys (title on slides varies: Oxidation Behavior of Cerium Surface Treated Chromia Forming Alloys)
Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This temperature will require the construction of boiler and turbine components from austenitic stainless steels and nickel alloys. Many of the alloys being considered for use are primarily Cr2O3 forming alloys [1-4]. It is well known that the addition of a small amount of reactive elements, such as the rare earths elements Ce, La, and Y, can significantly improve the high temperature oxidation resistance of both iron- and nickel- base alloys. A list of the benefits of the reactive element effect include: (i) slowing scale growth, (ii) enhancing scale adhesion; and (iii) stabilizing Cr2O3 formation at lower Cr levels. The incorporation of the reactive element can be made in the melt or through a surface infusion or surface coating. Surface modifications allow for the concentration of the reactive element at the surface where it can provide the most benefit. This paper will detail a Ce surface treatment developed at NETL that improves the high temperature oxidation resistance of Cr2O3 forming alloys. The treatment consists of painting, dip coating, or spraying the alloy surface with a slurry containing CeO2 and a halide activator followed by a thermal treatment in a mild (x10-3 Torr) vacuum. During treatment the CeO2 reacts with the alloy to for a thin CrCeO3-type scale on the alloy surface. Upon subsequent oxidation, scale growth occurs at a reduced rate on alloys in the surface treated condition compared to those in the untreated condition.
Evaluation of a Surface Treatment on the Performance of Stainless Steels for SOFC Interconnect Applications
Pack cementation-like Cerium based surface treatments have been found to be effective in enhancing the oxidation resistance of ferritic steels (Crofer 22APU) for solid oxide fuel cell (SOFC) applications. The application of either a CeN- or CeO2 based surface treatment results in a decrease in weight gain by a factor of three after 4000 hours exposure to air+3%H2O at 800oC. Similar oxide scales formed on treated and untreated surfaces, with a continuous Cr-Mn outer oxide layer and a continuous inner Cr2O3 layer formed on the surface. However, the thickness of the scales, and the amount of internal oxidation were significantly reduced with the treatment, leading to the decrease in oxidation rate. This presentation will detail the influence of the treatment on the electrical properties of the interconnect. Half-cell experiments (LSM cathode sandwiched between two steel interconnects) and full SOFC button cell experiments were run with treated and untreated interconnects. Preliminary results indicate the Ce treatment can improve SOFC performance.
Electron electric dipole moment experiment using electric-fieldquantized slow cesium atoms
A proof-of-principle electron electric dipole moment (e-EDM)experiment using slow cesium atoms, nulled magnetic fields, and electricfield quantization has been performed. With the ambient magnetic fieldsseen by the atoms reduced to less than 200 pT, an electric field of 6MV/m lifts the degeneracy between states of unequal lbar mF rbar and,along with the low (approximately 3 m/s) velocity, suppresses thesystematic effect from the motional magnetic field. The low velocity andsmall residual magnetic field have made it possible to induce transitionsbetween states and to perform state preparation, analysis, and detectionin regions free of applied static magnetic and electric fields. Thisexperiment demonstrates techniques that may be used to improve the e-EDMlimit by two orders of magnitude, but it is not in itself a sensitivee-EDM search, mostly due to limitations of the laser system.
Ionizing radiation predisposes non-malignant human mammaryepithelial cells to undergo TGF beta-induced epithelial to mesenchymaltransition
Transforming growth factor {beta}1 (TGF{beta}) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF{beta}, activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF{beta}-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGF{beta} (0.4 ng/ml), or double-treated. All double-treated (IR+TGF{beta}) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, {beta}-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel{trademark}. Neither radiation nor TGF{beta} alone elicited EMT, even though IR increased chronic TGF{beta} signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGF{beta}-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGF{beta}, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.
The D0 experiment's integrated luminosity for Tevatron Run IIa
An essential ingredient in all cross section measurements is the luminosity used to normalize the data sample. In this note, we present the final assessment of the integrated luminosity recorded by the D0 experiment during Tevatron Run IIa. The luminosity measurement is derived from hit rates from the products of inelastic proton-antiproton collisions registered in two arrays of scintillation counters called the luminosity monitor (LM) detectors. Measured LM rates are converted to absolute luminosity using a normalization procedure that is based on previously measured inelastic cross sections and the geometric acceptance and efficiency of the LM detectors for registering inelastic events. During Run IIa, the LM detector performance was improved by a sequence of upgrades to the electronic readout system and other factors summarized in this note. The effects of these changes on the reported luminosity were tracked carefully during the run. Due to the changes, we partition the run into periods for which different conversions from measured LM rates to absolute luminosity apply. The primary upgrade to the readout system late in Run IIa facilitated a reevaluation of the overall normalization of the luminosity measurement for the full data sample. In this note, we first review the luminosity measurement technique employed by D0. We then summarize the changes to the LM system during Run IIa and the corresponding normalization adjustments. The effect of the adjustments is to increase D0's assessment of its recorded integrated luminosity compared to what was initially reported during Run IIa. The overall increase is 13.4% for data collected between April 20, 2002 (the beginning of Run IIa data used for physics analysis) and February 22, 2006 (the end of Run IIa).
Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions
The Department of Energy’s Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.
Application of a XMM-Newton EPIC Monte Carlo to Analysis And Interpretation of Data for Abell 1689, RXJ0658-55 And the Centaurus Clusters of Galaxies
We propose a new Monte Carlo method to study extended X-ray sources with the European Photon Imaging Camera (EPIC) aboard XMM Newton. The Smoothed Particle Inference (SPI) technique, described in a companion paper, is applied here to the EPIC data for the clusters of galaxies Abell 1689, Centaurus and RXJ 0658-55 (the ''bullet cluster''). We aim to show the advantages of this method of simultaneous spectral-spatial modeling over traditional X-ray spectral analysis. In Abell 1689 we confirm our earlier findings about structure in temperature distribution and produce a high resolution temperature map. We also confirm our findings about velocity structure within the gas. In the bullet cluster, RXJ 0658-55, we produce the highest resolution temperature map ever to be published of this cluster allowing us to trace what looks like the motion of the bullet in the cluster. We even detect a south to north temperature gradient within the bullet itself. In the Centaurus cluster we detect, by dividing up the luminosity of the cluster in bands of gas temperatures, a striking feature to the north-east of the cluster core. We hypothesize that this feature is caused by a subcluster left over from a substantial merger that slightly displaced the core. We conclude that our method is very powerful in determining the spatial distributions of plasma temperatures and very useful for systematic studies in cluster structure.
Mass- and temperature-dependent diffusion coefficients for lightnoble gases for the TOUGH2-EOSN Model
This report describes modifications made to the EOSN module(Shan and Pruess, 2003) of the nonisothermal multiphase flow simulatorTOUGH2 (Pruess, et al., 1999). The EOSN fluid property module simulatestransport of water, brine, air, and noble gases or CO2 in the subsurface.In the standard version of the EOSN module, diffusion coefficients can bespecified by the user, but there is no allowance for liquid-phasediffusion coefficients to change with temperature. Furthermore, usersmust specify radiogenic sources of heat and helium for each element indata block GENER, which can be a time-consuming task for models withlarge numbers of elements. Our modifications seek to increase thefunctionality and efficiency of using TOUGH2-EOSN by allowing for mass-and temperature-dependent liquid-phase diffusion coefficients for heliumand neon and specification of radiogenic heat and helium production as aproperty of a material. The modified version is based on TOUGH2-EOSN andthus requires familiarity with the capabilities and input formats of theTOUGH2 code (Pruess, et al., 1999) and the EOSN module (Shan and Pruess,2003). This report only details our modifications and how to properlyutilize them.
Nonlinear Projective-Iteration Methods for Solving Transport Problems on Regular and Unstructured Grids
This is a project in the field of fundamental research on numerical methods for solving the particle transport equation. Numerous practical problems require to use unstructured meshes, for example, detailed nuclear reactor assembly-level calculations, large-scale reactor core calculations, radiative hydrodynamics problems, where the mesh is determined by hydrodynamic processes, and well-logging problems in which the media structure has very complicated geometry. Currently this is an area of very active research in numerical transport theory. main issues in developing numerical methods for solving the transport equation are the accuracy of the numerical solution and effectiveness of iteration procedure. The problem in case of unstructured grids is that it is very difficult to derive an iteration algorithm that will be unconditionally stable.
The Individuals with Disabilities Education Act (IDEA): Parentally Placed Children in Private Schools
No Description Available.
SALT FOG TEST OF SAM2X5 COATED STAINLESS STEEL CYLINDER
A salt fog test of an iron-based amorphous metal, SAM2X5, coated Type 316L stainless steel (SS316L) cylinder was made. The cylinder was 30-inch diameter by 88-inch long, and 3/8-inch thick. One end was welded shut with a SS316L end cap before coating. The body of the cylinder and the end cap were both coated. The cylinder was coated with SAM2X5 by the HVOF thermal spray process. The coating thickness was 0.015-inch to 0.019-inch thick. The cylinder was tested in a horizontal position. Also included in the test for reference purposes were five coupons (2-inch x 2-inch x 1/8-inch) of uncoated Type 1018 carbon steel (1018CS). The test used an abbreviated form of GM 9540P. Each cycle was 6 hours in duration and the cylinder and reference samples were exposed to a total of eight cycles. The cylinder was in relatively good condition after the test. Along the body of the cylinder only two pinpoint spot sized signs of rust were seen. The 1018CS reference specimens were extensively rusted.
Metastable Vacua and D-branes at the Conifold
We consider quiver gauge theories arising on D-branes at simple Calabi-Yau singularities (quotients of the conifold). These theories have metastable supersymmetry breaking vacua. The field theoretic mechanism is basically the one exhibited by the examples of Intriligator, Seiberg and Shih in SUSY QCD. In a dual description, the SUSY breaking is captured by the presence of anti-branes. In comparison to our earlier related work, the main improvements of the present construction are that we can reach the free magnetic range of the SUSY QCD theory where the existence of the metastable vacua is on firm footing, and we can see explicitly how the small masses for the quark flavors (necessary to the existence of the SUSY breaking vacua) are dynamically stabilized. One crucial mass term is generated by a stringy instanton. Finally, our models naturally incorporate R-symmetry breaking in the non-supersymmetric vacuum, in a way similar to the examples of Kitano, Ooguri and Ookouchi.
Thinking Differently: Developing a New Energy Economy
Presented by Dr. Dan E. Arvizu at the American Institute of Chemical Engineers (AIChE) 2007 Spring National Meeting on April 24, 2007 in Houston, Texas.
Studies of the Atmospheric Chemsitry of Energy-Related Volatile Organic Compounds and of their Atmospheric Reaction Products
The focus of this contract was to investigate selected aspects of the atmospheric chemistry of volatile organic compounds (VOCs) emitted into the atmosphere from energy-related sources as well as from biogenic sources. The classes of VOCs studied were polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs, the biogenic VOCs isoprene, 2-methyl-3-buten-2-ol and cis-3-hexen-1-ol, alkenes (including alkenes emitted from vegetation) and their oxygenated atmospheric reaction products, and a series of oxygenated carbonyl and hydroxycarbonyl compounds formed as atmospheric reaction products of aromatic hydrocarbons and other VOCs. Large volume reaction chambers were used to investigate the kinetics and/or products of photolysis and of the gas-phase reactions of these organic compounds with hydroxyl (OH) radicals, nitrate (NO3) radicals, and ozone (O3), using an array of analytical instrumentation to analyze the reactants and products (including gas chromatography, in situ Fourier transform infrared spectroscopy, and direct air sampling atmospheric pressure ionization tandem mass spectrometry). The following studies were carried out. The photolysis rates of 1- and 2-nitronaphthalene and of eleven isomeric methylnitronaphthalenes were measured indoors using blacklamp irradiation and outdoors using natural sunlight. Rate constants were measured for the gas-phase reactions of OH radicals, Cl atoms and NO3 radicals with naphthalene, 1- and 2-methylnaphthalene, 1- and 2-ethylnaphthalene and the ten dimethylnaphthalene isomers. Rate constants were measured for the gas-phase reactions of OH radicals with four unsaturated carbonyls and with a series of hydroxyaldehydes formed as atmospheric reaction products of other VOCs, and for the gas-phase reactions of O3 with a series of cycloalkenes. Products of the gas-phase reactions of OH radicals and O3 with a series of biogenically emitted VOCs were identified and quantified. Ambient atmospheric measurements of the concentrations of a number of PAHs, nitro-PAHs, nitrated polycyclic aromatic compounds and biogenic VOCs were carried out in the Los Angeles air basin. In addition to these laboratory …
Final Technical Report for University of Michigan Industrial Assessment Center
The UM Industrial Assessment Center assisted 119 primary metals, automotive parts, metal casting, chemicals, forest products, agricultural, and glass manufacturers in Michigan, Ohio and Indiana to become more productive and profitable by identifying and recommending specific measures to improve energy efficiency, reduce waste and increase productivity. This directly benefits the environment by saving a total of 309,194 MMBtu of energy resulting in reduction of 0.004 metric tons of carbon emissions. The $4,618,740 implemented cost savings generated also saves jobs that are evaporating from the manufacturing industries in the US. Most importantly, the UM Industrial Assessment Center provided extremely valuable energy education to forty one UM graduate and undergraduate students. The practical experience complements their classroom education. This also has a large multiplier effect because the students take the knowledge and training with them.
Design and Initial Tests of the Tracker-Converter ofthe Gamma-ray Large Area Space Telescope
The Tracker subsystem of the Large Area Telescope (LAT) science instrument of the Gamma-ray Large Area Space Telescope (GLAST) mission has been completed and tested. It is the central detector subsystem of the LAT and serves both to convert an incident gamma-ray into an electron-positron pair and to track the pair in order to measure the gamma-ray direction. It also provides the principal trigger for the LAT. The Tracker uses silicon strip detectors, read out by custom electronics, to detect charged particles. The detectors and electronics are packaged, along with tungsten converter foils, in 16 modular, high-precision carbon-composite structures. It is the largest silicon-strip detector system ever built for launch into space, and its aggressive design emphasizes very low power consumption, passive cooling, low noise, high efficiency, minimal dead area, and a structure that is highly transparent to charged particles. The test program has demonstrated that the system meets or surpasses all of its performance specifications as well as environmental requirements. It is now installed in the completed LAT, which is being prepared for launch in early 2008.
Branching Fraction and Charge Asymmetry Measurements inB to J/psi pi pi Decays
The authors study the decays B{sup 0} {yields} J/{psi} {pi}{sup +}{pi}{sup -} and B{sup +} {yields} J/{psi} {pi}{sup +}{pi}{sup 0}, including intermediate resonances, using a sample of 382 million B{bar B} pairs recorded by the BABAR detector at the PEP-II e{sup +}e{sup -} B factory. They measure the branching fractions {Beta}(B{sup 0} {yields} J/{psi} {rho}{sup 0}) = (2.7 {+-} 0.3 {+-} 0.17) x 10{sup -5} and {Beta}(B{sup +} {yields} J/{psi} {rho}{sup +}) = (5.0 {+-} 0.7 {+-} 0.31) x 10{sup -5}. The authors also set the following upper limits at the 90% confidence level: {Beta}(B{sup 0} {yields} J/{psi} {pi}{sup +}{pi}{sup -} non-resonant) &lt; 1.2 x 10{sup -5}, {Beta}(B{sup 0} {yields} J/{psi} f{sub 2}) &lt; 4.6 x 10{sup -6}, and {Beta}(B{sup +} {yields} J/{psi} {pi}{sup +}{pi}{sup 0} non-resonant) &lt; 4.4 x 10{sup -6}. They measure the charge asymmetry in charged B decays to J/{psi} {rho} to be -0.11 {+-} 0.12 {+-} 0.08.
Improved Measurement of CP Violation in Neutral BDecays to \ccbar s
The authors present updated measurements of time-dependent CP asymmetries in fully-reconstructed neutral B decays to several CP eigenstates containing a charmonium meson. The measurements use a data sample of (383 {+-} 4) x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II B factory. They determine sin2{beta} = 0.714 {+-} 0.032(stat) {+-} 0.018(syst) and |{lambda}| = 0.952 {+-} 0.022(stat) {+-} 0.017(syst).
Measurement of Decay Amplitudes of B to (ccbar) K^* withan Angular Analysis, for (ccbar)=J/Psi,Psi(2S) and Chi_c1
The authors perform the first three-dimensional measurement of the amplitudes of B {yields} {psi}(2S)K* and B {yields} {chi}{sub c1}K* decays and update the previous measurement B {yields} J/{psi}K*. They use a data sample collected with the BABAR detector at the PEP-II storage ring, corresponding to 232 million B{bar B} pairs. The longitudinal polarization of decays involving a J{sup PC} = 1{sup ++} {chi}{sub c1} meson is found to be larger than that with a 1{sup --} J/{psi} or {psi}(2S) meson. No direct CP-violating charge asymmetry is observed.
Measurement of the Absolute Branching Fraction of D0 to K- pi+
The authors measure the absolute branching fraction for D{sup 0} {yields} K{sup -} {pi}{sup +} using partial reconstruction of {bar B}{sup 0} {yields} D*{sup +}X{ell}{sup -}{bar {nu}}{sub {ell}} decays, in which only the charged lepton and the pion from the decay D*{sup +} {yields} D{sup 0}{pi}{sup +} are used. Based on a data sample of 230 million B{bar B} pairs collected at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC, they obtain {Beta}(D{sup 0} {yields} K{sup -}{pi}{sup +}) = (4.007 {+-} 0.037 {+-} 0.070)%, where the first error is statistical and the second error is systematic.
Measurement of the Hadronic Form factor in D0 to K- e+ nu_e Decays
The shape of the hadronic form factor f{sub +} (q{sup 2}) in the decay D{sup 0} {yields} K{sup -} e{sup +}{nu}{sub e} has been measured in a model independent analysis and compared with theoretical calculations. They use 75 fb{sup -1} of data recorded by the BABAR detector at the PEPII electron-positron collider. The corresponding decay branching fraction, relative to the decay D{sup 0} {yields} K{sup -} {pi}{sup +}, has also been measured to be R{sub D} = BR(D{sup 0} {yields} K{sup -}e{sup +}{nu}{sub e})/BR(D{sup 0} {yields} K{sup -}{pi}{sup +}) = 0.927 {+-} 0.007 {+-} 0.012. From these results, and using the present world average value for BR(D{sup 0} {yields} K{sup -}{pi}{sup +}), the normalization of the form factor at q{sup 2} = 0 is determined to be f{sub +}(0) = 0.727 {+-} 0.007 {+-} 0.005 {+-} 0.007 where the uncertainties are statistical, systematic, and from external inputs, respectively.
Ice damage in loblolly pine: Understanding the factors that influence susceptibility.
Abstract: Winter ice storms frequently occur in the southeastern United States and can severely damage softwood plantations. In January 2004, a severe storm deposited approximately 2 cm of ice on an intensively managed 4-year-old loblolly pine (Pinus taeda L.) plantation in South Carolina. Existing irrigation and fertilization treatments presented an opportunity to examine the effects of resource amendments on initial ice damage and subsequent recovery. Fertilized treatments showed more individual stem breakage, whereas non fertilized treatments showed more stem bending; however, the proportion of undamaged trees did not differ between treatments. Irrigation did not influence the type of damage. Trees that experienced breakage during the storm were taller with larger diameter and taper and leaf, branch, and crown biomass compared with unbroken trees. One growing season after ice damage, relative height increases were significantly greater for trees experiencing stem breakage compared with unbroken trees; however, relative diameter increases were significantly lower for these trees. Relative diameter increases for broken trees were smaller for fertilized treatments compared with nonfertilized treatments. A reduction in wood strength was ruled out as the cause of greater breakage in fertilized trees; rather, fertilized trees had reached an intermediate diameter range known to be susceptible to breakage under ice loading.
Fabrication and In Vitro Deployment of a Laser-Activated Shape Memory Polymer Vascular Stent
Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an in vitro artery model. A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery. At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W) due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of {approx}8 W. We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated.
Community Proteogenomics: background and application to the Rifle Bioremediation project
No Description Available.
Characterizing the production and retention of dissolved iron as Fe(II) across a natural gradient in chlorophyll concentrations in the Southern Drake Passage - Final Technical Report
Recent mesoscale iron fertilization studies in the Southern Ocean (e.g. SOIREE, EisenEx, SOFeX) have demonstrated the importance of iron as a limiting factor for phytoplankton growth in these high nutrient, low-chlorophyll (HNLC) waters. Results of these experiments have demonstrated that factors which influence the biological availability of the iron supplied to phytoplankton are crucial in bloom development, longevity, and generation of carbon export flux. These findings have important implications for the future development of iron fertilization protocols to enhance carbon sequestration in high-latitude oceans. In particular, processes which lead to the mobilization and retention of iron in dissolved form in the upper ocean are important in promoting continued biological availability of iron. Such processes can include photochemical redox cycling, which leads to the formation of soluble reduced iron, Fe(II), within iron-enriched waters. Creation of effective fertilization schemes will thus require more information about Fe(II) photoproduction in Southern Ocean waters as a means to retain new iron within the euphotic zone. To contribute to our knowledge base in this area, this project was funded by DOE with a goal of characterizing the production and retention of dissolved Fe as Fe(II) in an area of the southern Drake Passage near the Shackleton Transverse Ridge, a region with a strong recurrent chlorophyll gradient which is believed to be a site of natural iron enrichment in the Southern Ocean. This area was the focus of a multidisciplinary NSF/OPP-funded investigation in February 2004 (OPP02-30443, lead PI Greg Mitchell, SIO/UCSD) to determine the influence of mesoscale circulation and iron transport with regard to the observed patterns in sea surface chlorophyll in the region near the Shackleton Transverse Ridge. A number of parameters were assessed across this gradient in order to reveal interactions between plankton community structure and iron distributions. As a co-PI in the NSF/OPP-funded project, …
Summary for Policymakers IPCC Fourth Assessment Report, Working Group III
A. Introduction 1. The Working Group III contribution to theIPCC Fourth Assessment Report (AR4) focuses on new literature on thescientific, technological, environmental, economic and social aspects ofmitigation of climate change, published since the IPCC Third AssessmentReport (TAR) and the Special Reports on COB2B Capture and Storage (SRCCS)and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The following summary is organised into six sections after thisintroduction: - Greenhouse gas (GHG) emission trends, - Mitigation in theshort and medium term, across different economic sectors (until 2030), -Mitigation in the long-term (beyond 2030), - Policies, measures andinstruments to mitigate climate change, - Sustainable development andclimate change mitigation, - Gaps in knowledge. References to thecorresponding chapter sections are indicated at each paragraph in squarebrackets. An explanation of terms, acronyms and chemical symbols used inthis SPM can be found in the glossary to the main report.
High-Efficiency Resonant Cavity Quadrupole Moment Monitor
Measurement of the beam quadrupole moment at several locations can be used to reconstruct the beam envelope and emittance parameters. The measurements can be performed in a non-intercepting way using a set of quadrupole-mode cavities. We present a cavity design with an optimized quadrupole moment shunt impedance. The cavity properties can be characterized using a wire test method to insure symmetry about the central axis, and alignment to nearby position sensing cavities. The design and characterization of the prototype structure is discussed.
CMS DAQ event builder based on Gigabit Ethernet
The CMS Data Acquisition System is designed to build and filter events originating from 476 detector data sources at a maximum trigger rate of 100 KHz. Different architectures and switch technologies have been evaluated to accomplish this purpose. Events will be built in two stages: the first stage will be a set of event builders called FED Builders. These will be based on Myrinet technology and will pre-assemble groups of about 8 data sources. The second stage will be a set of event builders called Readout Builders. These will perform the building of full events. A single Readout Builder will build events from 72 sources of 16 KB fragments at a rate of 12.5 KHz. In this paper we present the design of a Readout Builder based on TCP/IP over Gigabit Ethernet and the optimization that was required to achieve the design throughput. This optimization includes architecture of the Readout Builder, the setup of TCP/IP, and hardware selection.
Reactor Physics Characterization of Transmutation Targeting Options in a Sodium Fast Reactor
In sodium fast reactor designs, the fuel related inherent negative reactivity feedback is accomplished mainly through parasitic capture in U-238. However for an efficient minor actinide burning system, it is desirable to reduce or eliminate U-238 entirely to suppress further transuranic actinide generation. Consequently, reactivity feedback is accomplished by enhancing axial neutron streaming during a loss of coolant void situation. This is done by flattening “pancake” the active core geometry. Flattening the reactor also increases axial leakage which removes neutrons that could otherwise be used to destroy minor actinides. Therefore, it is important to tailor the neutron spectrum in the core for optimized feedback and minor actinide destruction simultaneously by using minor actinide and fission product targets.
Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project
This document identifies the need to establish the Calcine Disposition Project to determine and implement the final disposition of calcine including characterization, retrieval, treatment (if necessary), packaging, loading, onsite interim storage pending shipment to a repository or interim storage facility, and disposition of related facilities.
Animal Agriculture: 2007 Farm Bill Issues
With a few exceptions (such as milk), the products of animal agriculture are not eligible for the price and income supports that Congress historically has written into farm bills for major row crops such as grains, cottons, and oilseeds. However, the meat and poultry industries do look to the federal government for leadership and support in prompting their exports, resolving trade disputes, and reassuring markets that their products are safe, of high quality, and disease free. Farm bills can contain policy guidance and resources to help achieve these objectives.
Animal Identification: Overview and Issues
Livestock industry groups, animal health officials, and the U.S. Department of Agriculture have been working to establish a nationwide identification system capable of quickly tracking animals from birth to slaughter, in order to combat a serious animal disease and/or to satisfy foreign market specifications. Some consumer groups are among those who believe animal identification also would be useful for food safety or retail labeling purposes. Some producers oppose new programs, fearing they will be costly and intrusive. In the 110th Congress as of 2007, one related bill (H.R. 1018) had been introduced; it would prohibit a mandatory program. Lawmakers could be asked to consider this or other measures on the topic, possibly as part of a 2007 farm bill.
Country-of-Origin Labeling for Foods
This report details the information related to Country-of-Origin labeling for foods.
Federal Farm Promotion (“Check-Off”) Programs
No Description Available.
Back to Top of Screen