UNT Libraries Government Documents Department - 5,732 Matching Results

Search Results

No Description Available.
Side-surface passivation effect on the electrical properties of metal-CdZnTe-metal structures
Project Hanford management contract quality improvement project management plan
On July 13, 1998, the U.S. Department of Energy, Richland Operations Office (DOE-RL) Manager transmitted a letter to Fluor Daniel Hanford, Inc. (FDH) describing several DOE-RL identified failed opportunities for FDH to improve the Quality Assurance (QA) Program and its implementation. In addition, DOE-RL identified specific Quality Program performance deficiencies. FDH was requested to establish a periodic reporting mechanism for the corrective action program. In a July 17, 1998 response to DOE-RL, FDH agreed with the DOE concerns and committed to perform a comprehensive review of the Project Hanford Management Contract (PHMC) QA Program during July and August, 1998. As a result, the Project Hanford Management Contract Quality Improvement Plan (QIP) (FDH-3508) was issued on October 21, 1998. The plan identified corrective actions based upon the results of an in-depth Quality Program Assessment. Immediately following the scheduled October 22, 1998, DOE Office of Enforcement and Investigation (EH-10) Enforcement Conference, FDH initiated efforts to effectively implement the QIP corrective actions. A Quality Improvement Project (QI Project) leadership team was assembled to prepare a Project Management Plan for this project. The management plan was specifically designed to engage a core team and the support of representatives from FDH and the major subcontractors (MSCs) to implement the QIP initiatives; identify, correct, and provide feedback as to the root cause for deficiency; and close out the corrective actions. The QI Project will manage and communicate progress of the process.
Letter of Intent for RPP Characterization Program Process Engineering and Hanford Analytical Services and Characterization Project
The Characterization Project level of success achieved by the River Protection Project (RPP) is determined by the effectiveness of several organizations across RPP working together. The requirements, expectations, interrelationships, and performance criteria for each of these organizations were examined in order to understand the performances necessary to achieve characterization objectives. This Letter of Intent documents the results of the above examination. It formalizes the details of interfaces, working agreements, and requirements for obtaining and transferring tank waste samples from the Tank Farm System (RPP Process Engineering, Characterization Project Operations, and RPP Quality Assurance) to the characterization laboratory complex (222-S Laboratory, Waste Sampling and Characterization Facility, and the Hanford Analytical Service Program) and for the laboratory complex analysis and reporting of analytical results.
The objectives of the confirmatory activities were to provide independent contractor field data reviews and to generate independent radiological data for use by the NRC in evaluating the adequacy and accuracy of the contractor�s procedures and FSS results. ORAU reviewed ABB CE�s decommissioning plan, final status survey plan, and the applicable soil DCGLs, which were developed based on an NRC-approved radiation dose assessment. The surveys include gamma surface scans, gamma direct measurements, and soil sampling.
A part of a new EBIS-based heavy ion preinjector, the low energy beam transport (LEBT) section between the high current EBIS and the RFQ is a challenging design, because it must serve many functions. In addition to the requirement to provide an efficient matching between the EBIS and the RFQ, this line must serve as a fast ''switchyard'', allowing singly charged ions from external sources to be transported into the EBIS trap region, and extracted, highly charged ions to be deflected to off-axis diagnostics (time-of-flight or emittance). The space charge of the 5-10 mA extracted heavy ion beam is a major consideration in the design, and the space charge force varies for different ion beams having Q/m from 1-0.16. The line includes electrostatic lenses, spherical and parallel-plate deflectors, magnetic solenoid, and diagnostics for measuring current, charge state distributions, emittance, and profile. A prototype of this beamline has been built, and results of tests are presented.
Abstract Not Provided
An Electron Beam Ion Source (EBIS), capable of producing high charge states and high beam currents of any heavy ion species in short pulses, is ideally suited for injection into a synchrotron. An EBIS-based, high current, heavy ion preinjector is now being built at Brookhaven to provide increased capabilities for the Relativistic Heavy Ion Collider (RHIC), and the NASA Space Radiation Laboratory (NSRL). Benefits of the new preinjector include the ability to produce ions of any species, fast switching between species to serve the simultaneous needs of multiple programs, and lower operating and maintenance costs. A state-of-the-art EBIS, operating with an electron beam current of up to 10 A, and producing multi-milliamperes of high charge state heavy ions, has been developed at Brookhaven, and has been operating very successfully on a test bench for several years. The present performance of this high-current EBIS is presented, along with details of the design of the scaled-up EBIS for RHIC, and the status of its construction. Other aspects of the project, including design and construction of the heavy ion RFQ, Linac, and matching beamlines, are also mentioned.
At the NRC�s request, ORAU conducted confirmatory surveys of the FNR during the period of December 4 through 6, 2012. The survey activities included visual inspections and measurement and sampling activities. Confirmatory activities also included the review and assessment of UM�s project documentation and methodologies. Surface scans identified elevated activity in two areas. The first area was on a wall outside of Room 3103 and the second area was in the southwest section on the first floor. The first area was remediated to background levels. However, the second area was due to gamma shine from a neighboring source storage area. A retrospective analysis of UM�s FSS data shows that for the SUs investigated by the ORAU survey team, UM met the survey requirements set forth in the FSSP. The total mean surface activity values were directly compared with the mean total surface activity reported by UM. Mean surface activity values determined by UM were within two standard deviations of the mean determined by ORAU. Additionally, all surface activity values were less than the corresponding gross beta DCGLW. Laboratory analysis of the soil showed that COC concentrations were less than the respective DCGLW values. For the inter-lab comparison, the DER was above 3 for only one sample. However, since the sum of fractions for each of the soil samples was below 1, thus none of the samples would fail to meet release guidelines. Based on the findings of the side-by-side direct measurements, and after discussion with the NRC and ORAU, UM decided to use a more appropriate source efficiency in their direct measurement calculations and changed their source efficiency from 0.37 to 0.25.
No abstract prepared.
Charged Higgs bosons in the transition region M{sub H{sup {+-}}} {approx} m{sub t} at the LHC
We illustrate preliminary results obtained through Monte Carlo (HERWIG) and detector (ATLFAST) simulations of the H{sup {+-}} {yields} {tau}{sup {+-}}{nu}{sub {tau}} signature of charged Higgs bosons with masses comparable to that of the top quark.
Hydrogen Storage Properties of the Tetrahydrofuran Treated Magnesium
The electronic structure, crystalline feature and morphology of the tetrahydrofuran (THF) treated magnesium, along with its hydriding and dehydriding properties have been investigated. The THF treated magnesium absorbs 6.3 wt per cent hydrogen at 723K and 3.5 MPa. After hydrogenation, in addition to the expected MgH2, a new less-stable hydride phase appears at 673K, but not at a lower temperature. Desorption produces 5.5 wt per cent hydrogen at 723K against a back pressure of 1.3 Pa after 20 cycles of hydriding-dehydriding. The THF treatment improves the kinetics of hydrogen absorption and desorption significantly. From 723K to 623K, the THF treated Mg demonstrates acceptable reaction rates. XPS studies show that tetrahydrofuran treatment causes the electronic energy state of the magnesium surface atoms to change, but the XRD studies show the crystal structure remains unchanged. Metallographic observation of the bulk hydrides of THF treated magnesium reveal they are poly-crystalline wi th the wide-spreading slip bands and twins within the crystals, indicating the phase transformation upon hydriding causes serious stress and distortion. It appears this microstructural deformation explains the much higher energy requirements (higher pressure and temperature) for magnesium hydrogenation than the simple lattice expansion that accompany hydrogen uptake for LaNi5 and FeTi.
Phenomenology of the deuteron electromagnetic form factors
A rigorous extraction of the deuteron charge form factors from tensor polarization data in elastic electron-deuteron scattering, at given values of the 4-momentum transfer, is presented. Then the world data for elastic electron-deuteron scattering is used to parameterize, in three different ways, the three electromagnetic form factors of the deuteron in the 4-momentum transfer range 0-7 fm. This procedure is made possible with the advent of recent polarization measurements. The parameterizations allow a phenomenological characterization of the deuteron electromagnetic structure. They can be used to remove ambiguities in the form factors extraction from future polarization data.
Pattern of Thermal Fluctuations in a Recovery Boiler Floor
The floor of a black liquor recovey boiler at a mill in central Canada has experienced cracking and delamination of the composite tubing near the spout wall and deformation of the floor panels that is most severe in the vicinity of the spout wall. One possible explanation for the observed damage is impacts of salt cake falling from the convective section onto the floor. In order to determine if such impacts do occur, strain gauges and thermocouples were installed on the boiler floor in areas where cracking and deformation were most frequent. The data obtained from these instruments indicate that brief, sudden temperature fluctuations do occur, and changes in the strain experienced by the affected tube occur simultaneously. These fluctuations appear to occur less often along the spout wall and more frequently with increasing distance from the wall. The frequency of these temperature fluctuations is insufficient for thermal fatigue to be the sole cause of the cracking observed on the tubes, but the data are consistent with what might be expected from pieces of falling salt cake.
Conversion Tower for Dispatchable Solar Power
Advanced Research Projects Agency-Energy project sheet summarizing general information about the High Energy Advanced Thermal Storage (HEATS) program including critical needs, innovation and advantages, impacts, and contact information. This sheet discusses new system architecture for a solar-electric conversion tower as part of the "High-Efficiency Solar-Electric Conversion Power Tower" project.
MCNP-REN - A Monte Carlo Tool for Neutron Detector Design Without Using the Point Model
The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo N-Particle code (MCNP) was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP - Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program (TAP) predict neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of MOX fresh fuel made using the Underwater Coincidence Counter (UWCC) as well as measurements of HEU reactor fuel using the active neutron Research Reactor Fuel Counter (RRFC) are compared with calculations. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions.
Low Temperature and High Pressure Evaluation of Insulated Pressure Vessels for Cryogenic Hydrogen Storage
Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures.
Detailed Analysis and Control Issues of Homogeneous Charge Compression Ignition (HCCI)
Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work.
Thin-film characterization and flaw detection. Final report, February 1, 1993--November 31, 1997
The objectives were to determine the elastic constants of thin films deposited on substrates, to measure residual stress and to detect and characterize defects in thin film substrate configurations. There are many present and potential applications of configurations consisting of a thin film deposited on a substrate. Thin films that are deposited to improve the hardness and/or the thermal properties of surfaces were of principal interest in this work. Thin film technology does, however, also include high {Tc} superconductor films, films for magnetic recording, superlattices and films for band-gap engineering and quantum devices. The studies that were carried out on this project also have relevance to these applications. Both the film and the substrate are generally anisotropic. A line-focus acoustic microscope has been used to measure the speed of surface acoustic waves (SAW) in the thin film/substrate system. This microscope has unique advantages for measurements in anisotropic media. Analytical and numerical techniques have been employed to extract the desired information on the thin film from the measured SAW data. Results include: (1) analytical and numerical techniques for the direct problem and for inverse methods; (2) measurements of homogeneous and superlattice film constants; (3) investigation of the effect of surface roughness and (4) measurements of residual stresses.
Effects of inlet icing on performance of axial-flow turbojet engine in natural icing conditions
A flight investigation in natural icing conditions was conducted to determine the effect of inlet ice formations on the performance of axial-flow turbojet engines. The results are presented for icing conditions ranging from a liquid-water content of 0.1 to 0.9 gram per cubic meter and water-droplet size from 10 to 27 microns at ambient-air temperature from 13 to 26 degrees F. The data show time histories of jet thrust, air flow, tail-pipe temperature, compressor efficiency, and icing parameters for each icing encounter. The effect of inlet-guide-vane icing was isolated and shown to account for approximately one-half the total reduction in performance caused by inlet icing.
The Religious Freedom Restoration Act: Its Rise, Fall, and Current Status
No Description Available.
Suits Against Terrorist States
No Description Available.
B physics: evidence for the exclusive decay b^+/-_c -> j/psi pi^+ and measurement of the mass of the b^+/-_c meson
We report the first evidence of a fully reconstructed decay mode of the B{sub c}{sup {+-}} meson in the channel B{sub c}{sup {+-}} {yields} J/{psi}{sup {+-}}, with J/{psi} {yields} {mu}{sup +}{mu}{sup -}. The analysis is based on an integrated luminosity of 360 pb{sup -1} in p{bar p} collisions collected by the Collider Detector at Fermilab. We observe 18.9 {+-} 5.7 signal events on a background of 10.0 {+-} 1.4 events and the fit to the J/{psi}{pi}{sup {+-}} mass spectrum yields a B{sub c}{sup {+-}} mass of 6287.0 {+-} 4.8(stat) {+-} 1.1(syst) MeV/c{sup 2}.
Exotic physics: search for scalar leptoquark pairs decaying to nu nu-bar qq-bar in p anti-p collisions at s**(1/2) = 1.96 tev
We report on a search for the pair production of scalar leptoquarks, LQ, using 191 pb{sup -1} of proton-antiproton collision data recorded by the CDF experiment during Run II of the Tevatron. The leptoquarks are sought via their decay into a neutrino and quark yielding missing transverse energy and several jets of large transverse energy. No evidence for leptoquark production is observed, and limits are set on {sigma}(p{bar p} {yields} LQ{ovr OQ}X {yields} v{bar v}q{bar q}X). Using a next-to-leading order theoretical prediction of the cross section for scalar leptoquark production, we exclude first-generation leptoquarks in the mass interval 78 to 117 GeV/c{sup 2} at the 95% confidence level for BR(LQ {yields} vq) = 100%.
Effects of Particulate Debris Morphology on the Rolling Wear Behavior of All-Steel and Si(Sub 3)N(Sub 4)-Steel Bearing Element Couples
Rolling contact fatigue experiments were performed on all-steel and hybrid Si{sub 3}N{sub 4}-M50 steel rolling bearing systems using particulate contaminated lubricants. The particulate contaminants used were glycothermally synthesized {alpha}-Al{sub 2}O{sub 3} platelets or Arizona test dust. The effects of contaminant composition and morphology on rolling contact fatigue and wear behavior were explored. The effects of bearing element material properties on fatigue and wear behavior were also examined. Rolling wear behavior is related to bearing component material configuration and the type of particulate contaminant present in the lubricant. Component and particulate material properties such as hardness and elastic modulus are observed to affect rolling wear behavior. Wear mechanisms such as contact stress fatigue, indenting, cutting and plowing are observed.
Sulfur Polymer Stabilization/Solidification (SPSS) Treatability of Simulated Mixed-Waste Mercury Contaminated Sludge
The Environmental Protection Agency (EPA) is currently evaluating alternative treatment standards for radioactively contaminated high mercury (Hg) subcategory wastes, which do not require the removal of mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needed additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 46 wt% (30 wt% dry) sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide the EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes.
Fundamental Studies of Recombinant Hydrogenases
This research addressed the long term goals of understanding the assembly and organization of hydrogenase enzymes, of reducing them in size and complexity, of determining structure/function relationships, including energy conservation via charge separation across membranes, and in screening for novel H2 catalysts. A key overall goal of the proposed research was to define and characterize minimal hydrogenases that are produced in high yields and are oxygen-resistant. Remarkably, in spite of decades of research carried out on hydrogenases, it is not possible to readily manipulate or design the enzyme using molecular biology approaches since a recombinant form produced in a suitable host is not available. Such resources are essential if we are to understand what constitutes a “minimal” hydrogenase and design such catalysts with certain properties, such as resistance to oxygen, extreme stability and specificity for a given electron donor. The model system for our studies is Pyrococcus furiosus, a hyperthermophile that grows optimally at 100°C, which contains three different nickel-iron [NiFe-] containing hydrogenases. Hydrogenases I and II are cytoplasmic while the other, MBH, is an integral membrane protein that functions to both evolve H2 and pump protons. Three important breakthroughs were made during the funding period with P. furiosus soluble hydrogenase I (SHI). First, we produced an active recombinant form of SHI in E. coli by the co-expression of sixteen genes using anaerobically-induced promoters. Second, we genetically-engineered P. furiosus to overexpress SHI by an order of magnitude compared to the wild type strain. Third, we generated the first ‘minimal’ form of SHI, one that contained two rather than four subunits. This dimeric form was stable and active, and directly interacted with a pyruvate-oxidizing enzyme with any intermediate electron carrier. The research resulted in five peer-reviewed publications.
Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois
Oak Ridge Institute for Science and Education (ORISE) conducted independent verification radiological survey activities at Argonne National Laboratory’s Building 315, Zero Power Reactor-6 facility in Argonne, Illinois. Independent verification survey activities included document and data reviews, alpha plus beta and gamma surface scans, alpha and beta surface activity measurements, and instrumentation comparisons. An interim letter report and a draft report, documenting the verification survey findings, were submitted to the DOE on November 8, 2006 and February 22, 2007, respectively (ORISE 2006b and 2007).
Confirmatory Survey Results for the Reactor Building Dome Upper Surfaces, Rancho Saco Nuclear Generating Station
Results from a confirmatory survey of the upper structural surfaces of the Reactor Building Dome at the Rancho Seco Nuclear Generating Station (RSNGS) performed by the Oak Ridge Institute for Science and Education for the NRC. Also includes results of interlaboratory comparison analyses on several archived soil samples that would be provided by RSNGS personnel. The confirmatory surveys were performed on June 7 and 8, 2006.
Development and Testing of the NIF Prototype Module
The NIF Power Conditioning System (PCS) is required to deliver -68 kJ to each of the 3840 flashlamp pairs in the NIF laser in a current pulse with a peak of -500 kA and rise time of- 150 µs. The PCS will consist of 192 modules each of which drive 20 lamp-pairs. Each module will basically be a 6 rnF capacitor bank with a nominal charge voltage of 23.5 kV which is switched by a single pressurized air gas switch to 20 RG-220 cables that are connected to individual lamp loads. In addition each module will have a number of subsystems including; a lamp pre-ionization system, power supplies, isolation circuits, trigger systems, safety dump systems, gas system, and an embedded control system. A module will also include components whose primary function is to limit fault currents and thus minimize collateral damage in faults. In the Prototype Development and Testing effort at Sandia National Laboratories all of these were integrated into a single system and proper fimctionality was demonstrated. Extensive testing was done at nominal operating levels into resistive dummy loads and some testing in fault modes was also done. A description of the system and a summary of testing is given in this paper.
Development of a video-based slurry sensor for on-line ash analysis. Technical progress report, third quarter, April 1, 1995--June 30, 1995
Automatic control of fine coal cleaning circuits has traditionally been limited by the lack of sensors for on-line ash analysis. Although several nuclear-based analyzers are available, none have seen widespread acceptance. This is largely due to the fact that nuclear sensors are expensive and tend to be influenced by changes in seam type and pyrite content Recently, researchers at VPI&SU have developed an optical sensor for phosphate analysis. The sensor uses image processing technology to analyze video images of phosphate ore. It is currently being used by Texas gulf for off-line analysis of dry flotation concentrates. The primary advantages of optical sensors over nuclear sensors are that they are significantly cheaper, are not subject to measurement variations due to changes in high atomic number minerals, are inherently safer and require no special radiation permitting. The purpose of this work is to apply the knowledge gained in the development of an optical phosphate analyzer to the development of an on-line ash analyzer for fine coal slurries. During the past quarter, a new prototype sample presentation system for the optical analyzer has been developed. This new approach appears to solve the problems encountered with previous prototypes. A qualitative comparison of the images obtained with the new system and those obtained with the previous prototypes indicates that the new system provides much smoother, clearer images. The new sample presentation system is currently being integrated with the image analysis computer and a patent disclosure has been filed with the university.
Optimization of the LCLS Single Pulse Shutter
A mechanical shutter which operates on demand is used to isolate a single pulse from a 120 Hz X-ray source. This is accomplished with a mechanical shutter which is triggered on demand with frequencies ranging from 0 to 10 Hz. The single pulse shutter is an iron blade that oscillates on a pivot in response to a force generated by a pair of pulsed electromagnets (current driven teeter-totter). To isolate an individual pulse from the X-ray beam, the motion of the mechanical shutter should be synchronized in such a way that it allows a single pulse to pass through the aperture and blocks the other incoming pulses. Two consecutive pulses are only {approx} 8 ms apart and the shutter is required to complete one full cycle such that no two pulses pass through the opening. Also the opening of the shutter blade needs to be at least 4 mm so that a 1 mm diameter rms Gaussian beam can pass through without modulation. However, the 4 mm opening is difficult to obtain due to blade rebound and oscillation of the blade after colliding with the electromagnet. The purpose of this project is to minimize and/or totally eliminate the rebound of the shutter blade in pursuit of maximizing the aperture while keeping the open window interval < {approx}12 ms.
Disappearance of back-to-back high p {sub T} hadron correlations in central Au+Au collisions at {radical}s{sub NN} = 200 GeV
Azimuthal correlations for large transverse momentum charged hadrons have been measured over a wide pseudo-rapidity range and full azimuth in Au+Au and p+p collisions at = {radical}s{sub NN} = 200 GeV. The small-angle correlations observed in p+p collisions and at all centralities of Au+Au collisions are characteristic of hard-scattering processes already observed in elementary collisions. A strong back-to-back correlation exists for p+p and peripheral Au + Au. In contrast, the back-to-back correlations are reduced considerably in the most central Au+Au collisions, indicating substantial interaction as the hard-scattered partons or their fragmentation products traverse the medium.
Medical waste irradiation study. Final report
The North Star Research Corporation Medical Waste project is described in this report, with details of design, construction, operation, and results to date. The project began with preliminary design of the accelerator. The initial design was for a single accelerator chamber with a vacuum tube cavity driver built into the chamber itself, rather than using a commercial tube separate from the RF accelerator. The authors believed that this would provide more adjustability and permit better coupling to be obtained. They did not have sufficient success with that approach, and finally completed the project using a DC accelerator with a unique new scanning system to irradiate the waste.
Proteomics: Technology and Applications
This meeting took place at the Keystone, Colorado resort from March 25-30, 2003. It was attended by 206 participants, of which 35 were students; 39% of attendees submitted abstracts. The meeting had 30% returning attendees and 70% new attendees. The group of speakers was composed of internationally recruited junior and senior experts in their respective fields. The group included representatives from academia and the private sector, highlights the convergence of proteomics efforts in the two sectors. The completion of the genome sequences of a large number of prokaryotic and eukaryotic species has catalyzed new research approaches to study the structure, function and control of biological processes. They are characterized by the systematic and in many cases quantitative analysis of all the molecules of a particular type expressed by a cell or tissue. The systematic analysis of proteins has been terms ''proteomics''. In an initial phase, most of the proteomics efforts were focused on large-scale protein identification. More recently, the objectives and technologies of proteomics have been diversified and expanded. Current proteomics research attempts to systematically and, where applicable, quantitatively determine the many properties of proteins and their biological function, including: protein abundance, state of modification, specific activity, interaction with other biomolecules, half-life, subcelluar location, structure and more. Significant current challenges include the development of suitable technologies to determine these properties on a proteome-wide scale, the interpretation of the large amounts of data obtained, and the integration of different types of data into a coherent model describing a biological process. The scientific program of the meeting intended to provide an up-to-date overview of the breadth of proteomics research and of emerging and mature technologies. Special emphasis was placed on discussing how proteomics technologies intersect with biological and clinical research. This was accomplished by bringing together leading experts from the different areas ...
Army Gas-Cooled Reactor Systems Program Monthly Progress Report: April 1959
Abstract: This monthly progress report covers the activities of the Army Gas-Cooled Reactor System Program for April 1959. The program includes a water-moderated heterogeneous reactor (Gas-Cooled Reactor Experiment I), a graphite-moderated homogeneous reactor (Gas-Cooled Reactor Experiment II), a mobile gas-cooled reactor (ML-1), and the coordination of the Gas Turbine Test Facility. [It reports] the progress of each project, the associated tests and data evaluation, the applicable design criteria, and the fabrication of reactor components" (p. 1).
Effects of He{sup +} ion implantation on optical and structural properties of MgAl{sub 2}O{sub 4}
Single crystals of magnesium-aluminate spinel were implanted with 170 keV He{sup +} ions to fluences ranging from 1 x 10{sup 16}--1 x 10{sup 21} ions/m{sup 2} at 120 K. The effects of ion implantation were studied using optical absorption spectroscopy, Rutherford Backscattering Spectroscopy and Ion Channeling (RBS/C) and Transmission Electron Microscopy (TEM). In absorption spectra obtained from the implanted samples, growth of an F-center band at 5.3 eV was observed. At the fluence of 3 x 10{sup 20} ions/m{sup 2}, the growth of this band not only ceases but the intensity suddenly decreases. This may be due to formation of a new phase at this fluence. This is partially confirmed by the fact that beginning at this dose, a modulated absorbance becomes apparent in the absorption spectrum of spinel. This effect is caused by formation of a buried layer with refraction index lower than that of an unimplanted sample. RBS/C and TEM measurements show that spinel is not amorphized over the fluence range examined in this study. TEM microdiffraction observations show that in the damaged region the intensities of superlattice spots decrease significantly, suggesting that ion beam irradiation induces either an order-disorder phase transition or a transformation into the so-called ``metastable'' phase of spinel.
Damage Accumulation in MgAl{sub 2}O{sub 4} and Yttria-Stabilized ZrO{sub 2} by Xe-Ion Irradiation
Magnesium-aluminate spinel (MAS) and yttria-stabilized zirconia (YSZ) are being considered for use as ceramic matrices in proliferation resistant fuels and radioactive storage systems, and may be used either as individual entities or as constituents in multicomponent ceramic systems. It is worthwhile, therefore, to compare radiation damage in these two potentially important materials when subjected to similar irradiation conditions, e.g., ion beam irradiation. To compare radiation damage properties of these two materials, single crystals of spinel and zirconia were irradiated with 340 keV Xe{sup ++} ions at 120 K, and subsequently investigated by Rutherford backscattering and ion channeling (RBS/C), and optical absorption spectroscopy. Results indicate that damage accumulation in both spinel and zirconia follow a three stage process: (1) very slow damage accumulation over a wide range of dose; (2) rapid changes in damage over a range of doses from about 0.25 to 25 displacements per atom (DPA); (3) slower damage accumulation at very high doses and possibly saturation. Optical absorption results indicate that F-centers form in Xe ion-irradiated spinel and that the concentration of these centers saturates at high dose. Absorption bands are also formed in both spinel and zirconia that are due to point defect complexes formed upon irradiation. These bands increase in intensity with increasing Xe dose, and, in the case of zirconia, without saturation. Finally the rate of change in intensity of these bands with increasing Xe dose, mimic the changes in damage observed by RBS/C with increasing dose.
A pipelined IC architecture for radon transform computations in a multiprocessor array
The amount of data generated by CT scanners is enormous, making the reconstruction operation slow, especially for 3-D and limited-data scans requiring iterative algorithms. The Radon transform and its inverse, commonly used for CT image reconstruction from projections, are computationally burdensome for today's single-processor computer architectures. If the processing times for the forward and inverse Radon transforms were comparatively small, a large set of new CT algorithms would become feasible, especially those for 3-D and iterative tomographic image reconstructions. In addition to image reconstruction, a fast Radon Transform Computer'' could be naturally applied in other areas of multidimensional signal processing including 2-D power spectrum estimation, modeling of human perception, Hough transforms, image representation, synthetic aperture radar processing, and others. A high speed processor for this operation is likely to motivate new algorithms for general multidimensional signal processing using the Radon transform. In the proposed workshop paper, we will first describe interpolation schemes useful in computation of the discrete Radon transform and backprojection and compare their errors and hardware complexities. We then will evaluate through statistical means the fixed-point number system required to accept and generate 12-bit input and output data with acceptable error using the linear interpolation scheme selected. These results set some of the requirements that must be met by our new VLSI chip architecture. Finally we will present a new unified architecture for a single-chip processor for computing both the forward Radon transform and backprojection at high data rates. 3 refs., 2 figs.
Scoping Inventory Calculations for the Rare Isotope Accelerator
This document is a report on our activities in FY03 exploring nuclear safety and hazard analysis issues relevant to the Rare Isotope Accelerator (RIA). It is not clear whether DOE will classify the RIA as an accelerator facility subject to the accelerator-specific safety requirements of DOE Order 420.2A or as a nonreactor nuclear facility subject to the requirements of 10 CFR 830. The final outcome of this issue will have significant impact on the construction and operation of the facility and the quality assurance requirements for items or services that may affect nuclear safety. The resolution of this issue will be an important earlier decision for the RIA project team and will require early consultation with the appropriate DOE authorities. For nuclear facilities, facility hazard classification depends on the inventory of releasable radionuclides; therefore, some simplistic, scoping inventory calculations for some assumed targets and beams are done to estimate the hazard category of RIA if it is declared a nuclear facility. These calculations show that for the scenarios analyzed, RIA would produce sufficient quantities of radionuclides to be classified as a Category 3 nuclear facility. Over the lifetime of RIA operations, it may be possible to build up Category 2 quantities of {sup 227}Ac and {sup 228}Th. A storage building, separate from the driver, target, and experimental buildings, used to store and isolate accumulated targets and other hardware, can mitigate the potential impact on RIA. The more onerous requirements of Category 2 facilities would only be imposed on the storage facility and not on the rest of the RIA facilities. Some of the differences in a category 2 and category 3 facility are discussed in Appendix 1.
Testing and modeling of seepage into underground openings in aheterogeneous fracture system at Yucca Mountain, Nevada
We discuss field activities designed to characterize seepage into an underground opening at the potential site for geologic storage of high-level radioactive waste (HLRW) at Yucca Mountain, Nevada, and the use of these data for development and calibration of a model for predicting seepage into planned HLRW emplacement drifts. Air-injection tests were conducted to characterize the permeability of the fractured rock, and liquid-release tests (LRTs) were conducted and seepage monitored to characterize the seepage-relevant properties of the fractured rock. Both air-injection and liquid-release tests were performed in the same borehole intervals, located above the underground openings. For modeling, three-dimensional, heterogeneous permeability fields were generated, conditioned on the air-permeability data. The initial seepage data collected were used to calibrate the model and test the appropriateness of the modeling approach. A capillary-strength parameter and porosity were the model parameters selected for estimation by data inversion. However, due to the short-term nature of the initial data, the inversion process was unable to independently determine the capillary strength and porosity of the fractured rock. Subsequent seepage data collection focused on longer-term tests, a representative selection of which was used for data inversion. Field observations also played a key role by identifying factors such as evaporation and ceiling geometry that can enhance or reduce seepage. These observations help guide future test and model development by ensuring that relevant processes that influence seepage are identified, characterized, and incorporated into the model, thus increasing confidence in the parameter estimates. It is this iterative and collaborative approach to field testing and modeling, and the feedback mechanisms of field-test-methodology and model review and revision, that has been employed to continuously improve the scientific quality of the study. Initiation of modeling as soon as the first liquid-release data were available, review of the models with the field-testing team, and feedback ...
Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment
Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion ...
CENRTC Project {number_sign}2F3EOA, OCB A-376, acceptance test procedure
This test procedure provides the steps necessary to verify correct functional operation of controls, annunciators, alarms, protective relays and related systems impacted by CENRTC {number_sign}2F3E0A, Microwave Transfer Trip Project, modification work performed under work package 6B-93-00041/M. This procedure separates three tests into separate sections: energization of A-376 duplex panel and circuits; SCADA tests; and A-376 local trip tests.
Novel reactor configuration for synthesis gas conversion to alcohols. Quarterly report, October 1, 1991--December 31, 1991
Our objectives during this quarter was to complete studies on the kinetics of methanol synthesis reaction in the slurry reactor with long periods of on stream studies, start experimentation in the trickle bed reactor assembly, investigate simulation studies using the piston-exchange (PE) and piston-dispersion-exchange (PDE) models, and introduce water gas shift reaction as the second reaction in our simulation studies.
Novel reactor configuration for synthesis gas conversion to alcohols
Our objectives during this quarter was to complete studies on the kinetics of methanol synthesis reaction in the slurry reactor with long periods of on stream studies, start experimentation in the trickle bed reactor assembly, investigate simulation studies using the piston-exchange (PE) and piston-dispersion-exchange (PDE) models, and introduce water gas shift reaction as the second reaction in our simulation studies.
The Overseas Private Investment Corporation: Background and Legislative Issues
This report provides: (1) a background on Overseas Private Investment Corporation (OPIC) origins and program operations; (2) discussion of the international development finance context; and (3) analysis of key issues for Congress related to OPIC.
Export-Import Bank: Overview and Reauthorization Issues
This report provides: a general background of Export-Import (Ex-Im) Bank; a discussion of the international context of the Bank; analysis of key issues that Congress may consider in a reauthorization debate; and the congressional outlook on Ex-Im Bank.
This report summarizes the accomplishment made during the second year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. The technical difficulties that were encountered in implementing Computer Automated Radioactive Particle Tracking (CARPT) in high pressure SBCR have been successfully resolved. New strategies for data acquisition and calibration procedure have been implemented. These have been performed as a part of other projects supported by Industrial Consortium and DOE via contract DE-2295PC95051 which are executed in parallel with this grant. CARPT and Computed Tomography (CT) experiments have been performed using air-water-glass beads in 6 inch high pressure stainless steel slurry bubble column reactor at selected conditions. Data processing of this work is in progress. The overall gas holdup and the hydrodynamic parameters are measured by Laser Doppler Anemometry (LDA) in 2 inch slurry bubble column using Norpar 15 that mimic at room temperature the Fischer Tropsch wax at FT reaction conditions of high pressure and temperature. To improve the design and scale-up of bubble column, new correlations have been developed to predict the radial gas holdup and the time averaged axial liquid recirculation velocity profiles in bubble columns.
This report summarizes the accomplishment made during the first year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. A technical review of the variables affecting the SBCR performance, some aspects of bubble dynamics and hydrodynamics properties and physical properties of FT waxes and catalyst have been performed. The needed experimental facilities and measurement techniques have been evaluated and prepared. Exxon Norpar 14 has been suggested as a solvent to be used that mimics at room temperature and pressure up to 200 psi the hydrodynamics of FT waxes. A new correlation has been developed and tested to predict gas-liquid mass transfer coefficient at high pressure operation based on high pressure gas holdup and atmospheric data of gas-liquid mass transfer coefficient.
This report summarizes the accomplishment made during the third year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. Data processing of the performed Computer Automated Radioactive Particle Tracking (CARPT) experiments in 6 inch column using air-water-glass beads (150 {micro}m) system has been completed. Experimental investigation of time averaged three phases distribution in air-Therminol LT-glass beads (150 {micro}m) system in 6 inch column has been executed. Data processing and analysis of all the performed Computed Tomography (CT) experiments have been completed, using the newly proposed CT/Overall gas holdup methodology. The hydrodynamics of air-Norpar 15-glass beads (150 {micro}m) have been investigated in 2 inch slurry bubble column using Dynamic Gas Disengagement (DGD), Pressure Drop fluctuations, and Fiber Optic Probe. To improve the design and scale-up of bubble column reactors, a correlation for overall gas holdup has been proposed based on Artificial Neural Network and Dimensional Analysis.