UNT Libraries Government Documents Department - 3,523 Matching Results

Search Results

Ion Deflection for Final Optics in Laser Inertial Fusion Power Plants
Left unprotected, both transmissive and reflective final optics in a laser-driven inertial fusion power plant would quickly fail from melting, pulsed thermal stress, or degradation of optical properties as a result of ion implantation. One potential option for mitigating this threat is to magnetically deflect the ions such that they are directed to a robust energy dump. In this paper we detail integrated studies that have been carried out to assess the viability of this approach for protecting final optics.
A Measurement of the Branching Ratio of the pi0 Dalitz Decay using K(L) ---> 3 pi0 Decays from KTeV
The authors present a measurement of B({pi}{sup 0} {yields} e{sup +}e{sup -}{gamma})/B({pi}{sup 0} {yields} {gamma}{gamma}) using data taken in 1999 by the E832 KTeV experiment at Fermilab. The {pi}{sup 0}s were produced by K{sub L} decays in flight that are fully reconstructed. They find 63,693 K{sub L} {yields} 3{pi}{sup 0} {yields} {gamma}{gamma} {gamma}{gamma} e{sup +}e{sup -}{gamma} decays in KTeV data (an increase of a factor of {approx} 20 in event statistics over previous experiments), and normalize to K{sub L} {yields} 3{pi}{sup 0} {yields} 6{gamma}, to extract B({pi}{sup 0} {yields} e{sup +}e{sup -}{gamma}, m{sub e{sup +}e{sup -}} > 15 MeV/c{sup 2})/B({pi}{sup 0} {yields} {gamma}{gamma}) = (3.920 {+-} 0.016 {+-} 0.036) x 10{sup -3}, where the first error is statistical and the second is systematic. Using the Mikaelian and Smith prediction for the e{sup +}e{sup -} mass spectrum as implemented in the KTeV Monte Carlo to correct to the full e{sup +}e{sup -} mass range yields B({pi}{sup 0} {yields} e{sup +}e{sup -}{gamma})/B({pi}{sup 0} {yields} {gamma}{gamma}) = (1.1559 {+-} 0.0046 {+-} 0.0107)%. This result is consistent with previous measurements and with theoretical predictions, and the uncertainty is a factor of three smaller than any previous measurement.
MOESSBAUER STUDY OF DIFFUSION IN LIQUIDS.
No Description Available.
Design, development and evaluation of a precision air bearing rotary table with large diameter through-hole
A large diameter precision air bearing rotary table with a 16.0 inch diameter through-hole was designed, fabricated and tested in the course of this research. The rotary table will be used in conjunction with a specialized, computer controlled precision inspection machine being designed for the Department of Energy`s (DOE) Nuclear Weapons Complex (NWC). The design process included a complete engineering analysis to predict the final performance of the rotary table, and to ensure that the rotary table meets the required accuracy of 4.0 microinches of total radial (3.5 microinches average radial) and 4.0 microinches total axial (3.5 microinches average axial) errors. The engineering analysis included structural deformation, thermal sensitivity and dynamic analyses using finite element methods in some cases, as well as other analytic solutions. Comparisons are made between predicted and tested values, which are listed in the rotary table error budget. The rotary table performed as predicted with measured axial and radial stiffnesses of 1.1E06 lbf/inch and 2.9E06 lbf/inch, respectively, as well as average radial, axial and tilt errors of 2.5 microinches, 1.5 microinches, and less than 0.05 arcseconds, respectively.
The High Temperature, High Vacuum Vaporization and Thermodynamic Properties of Uranium Dioxide
No Description Available.
Healing of lithographically introduced flaws in glass and glass containing ceramics
The morphological evolution of cylindrical pores or ``channels`` and crack-like cavities in glass and glass-containing ceramics at elevated temperatures was studied. The systems studied were: Coming 7056 alkali borosilicate glass, soda-lime glass (microscope slides), a commercially available 96% Al{sub 2}O{sub 3}with {approx}5--10% intergranular glass, 96% Al{sub 2}O{sub 3} bonded to sapphire, and a model sapphire/glass/sapphire system fabricated by diffusion bonding etched and unetched pieces of sapphire onto which 30--50 nm of SiO{sub 2} had been sputter deposited. These systems span a broad range of glass contents, and permit observation of healing behavior with varying glass content. The results were compared with analytical models and results of similar studies in completely crystalline systems.
Solvation!
This dissertation consists of two closely related parts: theory development and coding of correlation effects in a model potential for solvation, and study of solvent effects on chemical reactions and processes. The effective fragment potential (EFP) method has been re-parameterized, using density functional theory (DFT), more specifically, the B3LYP functional. The DFT based EFP method includes short-range correlation effects; hence it is a first step in incorporating the treatment of correlation in the EFP solvation model. In addition, the gradient of the charge penetration term in the EFP model was derived and coded. The new method has been implemented in the electronic structure code GAMESS and is in use. Formulas for the dynamic dipole polarizability, C{sub 6} dispersion coefficient and dispersion energy were derived and coded as a part of a treatment of the dispersion interactions in the general solvation model, EFP2. Preliminary results are in good agreement with experimental and other theoretical data. The DFT based EFP (EFP1/DFT) method was used in the study of microsolvation effects on the S{sub N}2 substitution reaction, between chloride and methyl bromide. Changes in the central barrier, for several lowest lying isomers of the systems with one, two, three and four waters, were studied using second order perturbation theory (MP2), DFT and mixed quantum mechanics (QM)/(EFP1/DFT) methods. EFP1/DFT is found to reproduce QM results with high accuracy, at just a fraction of the cost. Molecular structures and potential energy surfaces for IHI{sup -} {center_dot} Ar{sub n} (n=1-7) were studied using the MP2 method. Experimentally observed trends in the structural arrangement of the Ar atoms were explained through the analysis of the geometrical parameters and three-dimensional MP2 molecular electrostatic potentials.
STUDY OF ELECTRON EMISSIONS OF SOME MASS SEPARATED FISSION PRODUCT ACTIVITIES.
No Description Available.
Electrochemical arsenic remediation for rural Bangladesh
Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three …
Measurement of the Top Quark Mass at CDF Using the Template Method in the Lepton + Jets Channel
A measurement of the top quark mass in p{bar p} collisions at {radical}s = 1.96 TeV is presented. The analysis uses a template method, in which the overconstrained kinematics of the Lepton+Jets channel of the t{bar t} system are used to measure a single quantity, the reconstructed top quark mass, that is strongly correlated with the true top quark mass. in addition, the dijet mass of the hadronically decaying W boson is used to constrain in situ the uncertain jet energy scale in the CDF detector. Two-dimensional probability density functions are derived using a kernel density estimate-based machinery. Using 1.9 fb{sup -1} of data, the top quark mass is measured to be 171.8{sub -1.9}{sup +1.9}(stat.) {+-} 1.0(syst.)GeV/c{sup 2}.
TRANSPORT REACTIONS OF THORIUM OXYDIIODIDE.
No Description Available.
Micromechanics analysis of composite materials using finite element methods
No Description Available.
Solid-State Chemistry of Irradiated Choline Chloride
No Description Available.
Naturalness and supersymmetry
In this thesis, the author argues that the supersymmetric Standard Model, while avoiding the fine tuning in electroweak symmetry breaking, requires unnaturalness/fine tuning in some (other) sector of the theory. For example, Baryon and Lepton number violating operators are allowed which lead to proton decay and flavor changing neutral currents. He studies some of the constraints from the latter in this thesis. He has to impose an R-parity for the theory to be both natural and viable. In the absence of flavor symmetries, the supersymmetry breaking masses for the squarks and sleptons lead to too large flavor changing neutral currents. He shows that two of the solutions to this problem, gauge mediation of supersymmetry breaking and making the scalars of the first two generations heavier than a few TeV, reintroduce fine tuning in electroweak symmetry breaking. He also constructs a model of low energy gauge mediation with a non-minimal messenger sector which improves the fine tuning and also generates required Higgs mass terms. He shows that this model can be derived from a Grand Unified Theory despite the non-minimal spectrum.
Search for the electroweak production of the top quark in the D0 experiment
No Description Available.
Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals
This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.
Pseudoscalar Semileptonic Decays of the D0 Meson
The FOCUS experiment is designed to investigate charm particle decays. These charm particles are produced by the interaction of a photon beam with an average energy of 175 GeV on a BeO target and travel an average of few millimeters before decaying in the spectrometer. By reconstructing the daughters from the decay, we can infer properties of the charm particles. Semileptonic decays have been used to measure many CKM matrix elements. These decays are interesting due to the simplicity of their theoretical description but they are experimentally challenging due to the fact that a neutrino is not detected. Analysis of semileptonic decays in the charm sector are of great interest because they provide an excellent environment to test and to calibrate theoretical calculation that can be implemented in the determination of poorly known matrix elements such as V{sub ub}. In this thesis we report an analysis of the decays D{sup 0} {yields} {pi}{sup -}{mu}{sup +}{nu} and D{sup 0} {yields} K{sup -} {mu}{sup +}{nu}. We measure the relative branching ratio as well as the ratio of the form factors f{sub +}{sup {pi}}(0)/f{sub +}{sup K}(0). Using a weighting technique, we further report a parametric analysis of the q{sup 2} dependence for both the decay modes measuring the pole masses. For the decay D{sup 0} {yields} K{sup -}{mu}{sup +}{nu}, we report on the form factor ratio f{sub -}{sup K}(0)/f{sub +}{sup K}(0). Finally, they report a non-parametric study of the q{sup 2} dependence of the form factor for the decay D{sup 0} {yields} K{sup -} {mu}{sup +}{nu}.
Measurement of the inclusive jet cross section at D0 Run II
No Description Available.
An improved Neutrino Oscillations Analysis of the MiniBooNE Data
We calculate the exclusion region in the parameter space of {nu}{sub {mu}} {yields} {nu}{sub e} oscillations of the LSND type using a combined fit to the reconstructed energy distributions of neutrino candidate samples from the MiniBooNE data obtained with two different particle identification methods. The two {nu}{sub e} candidate samples are included together with a high statistics sample of {nu}{sub {mu}} events in the definition of a {chi}{sup 2} statistic which includes the correlations between the energy intervals of all three samples and handles the event overlap between the {nu}{sub e} samples. The {nu}{sub {mu}} sample is introduced to constrain the effect of systematic uncertainties. This analysis increases the exclusion limit in the region {Delta}m{sup 2} {approx}< 1eV{sup 2} when compared with the result previously published by the collaboration, which used a different technique.
NUCLEAR SPECTROSCOPIC STUDIES OF SOME VERY HEAVY ODD-MASS NUCLIDES
The nuclear radiations of nuclides: U{sup 233}, Pu{sup 239}, Bk{sup 243}, Bk{sup 244}, Bk{sup 245}, Bk{sup 246}, Bk{sup 249}, Cf{sup 249}, and Fm{sup 255} were investigated with high-resolution spectrometers. The {alpha}-particle spectra of all nuclides except Bk{sup 249} were measured with 6 mm diameter surface-barrier detectors. Bk{sup 249} {alpha}-particles were analyzed with a double-focusing magnetic spectrograph. The {gamma}-singles were examined with the recently developed Ge(Li) and Si(Li) detectors coupled with very-low noise 'internal FET' preamplifiers. Weak alpha groups were observed in coincidence with {gamma}-rays, detected with a NaI(Tl) scintillation spectrometer. To improve the over-all coincidence efficiency a new coincidence apparatus was designed and built. This instrument consisted of a cooled 4.5 cm diameter semiconductor detector for {alpha}-particle detection and a 3 cm diameter by 2.7 cm long Ge(Li) detector for {gamma}-ray analysis. The Ge(Li) detector could also be replaced with a NaI(Tl) detector. Cf{sup 249} conversion electrons were measured with a cooled Si(Li) detector coupled with an internal FET preamplifier. On the basis of the present work and previous information, energy-level diagrams of the daughter nuclei have been constructed. The levels have been grouped into rotational bands built on Nilsson single-particle states. Because of identification of several rotational members of the bands, definite Nilsson quantum number assignments have been made in most cases. The alpha intensity calculations of Poggenburg were found quite helpful in making these assignments. A strong Coriolis effect was observed in the Am{sup 245} levels populated by the alpha groups of Bk{sup 249}. Calculations were made with Nilsson wave-functions, and these were found to agree with the experimental results. The Coriolis interaction was found important in almost all cases; the effect was very noticeable in the level spacings between the rotational members of the bands. High-lying bands in Cm{sup 245} (at 644 keV) and cf{sup 251} (at …
Study of Charmed Baryon Sigma(C)(2800) Production at the BaBar Experiment
This dissertation reports on a study of search for an orbitally excited state of charmed baryons {Sigma}{sub c}{sup 0}(2800) and {Sigma}{sub c}{sup ++}(2800). They measure the widths, momentum spectrum and production cross-section for these states decaying into a {Lambda}{sub c}{sup +} and a charged {pi}. The analysis uses 230 fb{sup -1} of data collected at BABAR detector operating at PEP-II collider at Stanford Linear Accelerator Center. The data is collected in the region of {Upsilon}(4S) an {approx} 40 MeV below the resonance. {Lambda}{sub c}{sup +} baryon is reconstructed in the decay mode pK{sup -}{pi}{sup +}. The {Sigma}{sub c}(2800) baryon production at continuum is observed to be quite significant for x{sub p} > 0.7, where x{sub p} = p/{radical}E{sup 2}+M{sup 2} is the scaled momentum and varies from 0.0 to 1.0. The momentum spectrum is measured by considering the corrected yield for momentum bins above x{sub p} > 0.5 and can be parameterized very well by a Peterson function, given by: dN/dx{sub p} {proportional_to} 1/x{sub p}(1 - 1/x{sub p} - {epsilon}/1-x{sub p}){sup 2}. The values for the peterson parameter {epsilon}, are found to be 0.050 {+-} 0.010 for {Sigma}{sub c}{sup 0}(2800) and 0.057 {+-} 0.012 for {Sigma}{sub c}{sup ++}(2800). They use the momentum spectrum to evaluate the production cross-sections to be: {sigma}(e{sup +}e{sup -} {yields} {Sigma}{sub c}{sup 0}(2800)X). {Beta}({Sigma}{sub c}{sup 0}(2800) {yields} {Lambda}{sub c}{sup +}{pi}{sup -}) = 1.36 {+-} 0.42 pb and {sigma}(e{sup +}e{sup -} {yields} {Sigma}{sub c}{sup ++}(2800)X).{Beta}({Sigma}{sub c}{sup ++}(2800){yields} {Lambda}{sub c}{sup +}{pi}{sup +}) = 1.68 {+-} 0.54 pb. The authors also measure the width to be 65.6 {+-} 14.9 MeV and 67.7 {+-} 16 MeV, for the neutral and charged modes, respectively, and the corresponding observed mass differences ({Lambda}{sub c}{sup +}{pi} - {Lambda}{sub c} + 2.285), are 2.8008 {+-} 0.0023GeV/c{sup 2} and 2.7980 {+-} 0.0028GeV/c{sup 2}. The uncertainty here …
Structural and Magnetothermal Properties of Compounds: Yb5SixGe4-x,Sm5SixGe4-x, EuO, and Eu3O4
The family of R{sub 5}Si{sub x}Ge{sub 4-x} alloys demonstrates a variety of unique physical phenomena related to magneto-structural transitions associated with reversible breaking and reforming of specific bonds that can be controlled by numerous external parameters such as chemical composition, magnetic field, temperature, and pressure. Therefore, R{sub 5}Si{sub x}Ge{sub 4-x} systems have been extensively studied to uncover the mechanism of the extraordinary magneto-responsive properties including the giant magnetoresistance (GMR) and colossal magnetostriction, as well as giant magnetocaloric effect (GMCE). Until now, more than a half of possible R{sub 5}Si{sub x}Ge{sub 4-x} pseudobinary systems have been completely or partially investigated with respect to their crystallography and phase relationships (R = La, Pr, Nd, Gd, Tb, Dy, Er, Lu, Y). Still, there are other R{sub 5}Si{sub x}Ge{sub 4-x} systems (R = Ce, Sm, Ho, Tm, and Yb) that are not studied yet. Here, we report on phase relationships and structural, magnetic, and thermodynamic properties in the Yb{sub 5}Si{sub x}Ge{sub 4-x} and Sm{sub 5}Si{sub x}Ge{sub 4-x} pseudobinary systems, which may exhibit mixed valence states. The crystallography, phase relationships, and physical properties of Yb{sub 5}Si{sub x}Ge{sub 4-x} alloys with 0 {le} x {le} 4 have been examined by using single crystal and powder x-ray diffraction at room temperature, and dc magnetization and heat capacity measurements between 1.8 K and 400 K in magnetic fields ranging from 0 to 7 T. Unlike the majority of R{sub 5}Si{sub x}Ge{sub 4-x} systems studied to date, where R is the rare earth metal, all Yb-based germanide-silicides with the 5:4 stoichiometry crystallize in the same Gd{sub 5}Si{sub 4}-type structure. The magnetic properties of Yb{sub 5}Si{sub x}Ge{sub 4-x} materials are nearly composition-independent, reflecting the persistence of the same crystal structure over the whole range of x from 0 to 4. Both the crystallographic and magnetic property data indicate that Yb{sub …
Measurement of the production rate of the charm jet recoiling against the W boson using the D0 detector at the Fermilab Tevatron Collider
This dissertation describes a measurement of the rate of associated production of the W boson with the charm jet in the proton and anti-proton collisions at the center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider. The measurement has direct sensitivity to the strange quark content inside the proton. A direct measurement of the momentum distribution of the strange quark inside the proton is essential for a reliable calculation of new physics signal as well as the background processes at the collider experiments. The identification of events containing a W boson and a charm jet is based on the leptonic decays of the W boson together with a tagging technique for the charm jet identification based on the semileptonic decay of the charm quark into the muon. The charm jet recoiling against the W boson must have a minimum transverse momentum of 20 GeV and an absolute value of pseudorapidity less than 2.5. This measurement utilizes the data collected by the D0 detector at the Fermilab Collider. The measured rate of the charm jet production in association with the W boson in the inclusive jet production with the W boson is 0.074 {+-} 0.023, which is in agreement with the theoretical predictions at the leading order in Quantum Chromodynamics.
Hiking the valleys of quatum chemistry
This thesis is concerned with both the application and the extension of quantum chemical methods. Each chapter of the thesis represents a paper that has been published in or will be submitted to a scientific journal. The first three chapters of this thesis describe contributions made to chemistry through the use of quantum chemical methods, while the final two chapters illustrate the development of new methods. Chapter 2 and Chapter 3 characterize a study of the electronic structure and magnetic properties of homodinuclear titanium(III) complexes, in order to determine trends related to their potential use as molecular magnets. Chapter 2 focuses on hydride and halide bridging and terminal ligands, while Chapter 3 explores bridging ligands from other groups in the periodic table. Chapter 4 portrays a study of the solvation of glycine. Microsolvation and continuum solvation approaches are investigated in order to study the structures of small glycine-water clusters and determine the energy difference between the zwitterionic and nonionized forms of glycine, the simplest amino acid. Chapters 5 and 6 describe the implementation of analytic gradients, which are required for efficient molecular geometry optimizations, for two open-shell second-order perturbation theory methods. Chapter 5 discusses gradients for unrestricted Moeller-Plesset perturbation theory, and Chapter 6 describes gradients for Z-averaged perturbation theory.
Analysis of stray radiation produced by the advanced light source (1.9 GeV synchrotron radiation source) at Lawrence Berkeley Laboratory
The yearly environmental dose equivalent likely to result at the closest site boundary from the Advanced Light Source was determined by generating multiple linear regressions. The independent variables comprised quantified accelerator operating parameters and measurements from synchronized, in-close (outside shielding prior to significant atmospheric scattering), state-of-the-art neutron remmeters and photon G-M tubes. Neutron regression models were more successful than photon models due to lower relative background radiation and redundant detectors at the site boundary. As expected, Storage Ring Beam Fill and Beam Crashes produced radiation at a higher rate than gradual Beam Decay; however, only the latter did not include zero in its 95% confidence interval. By summing for all three accelerator operating modes, a combined yearly DE of 4.3 mRem/yr with a 90% CI of (0.04-8.63) was obtained. These results fall below the DOE reporting level of 10 mRem/yr and suggest repeating the study with improved experimental conditions.
CMS HF calorimeter PMTs and Xi(c)+ lifetime measurement
This thesis consists of two parts: In the first part we describe the Photomultiplier Tube (PMT) selection and testing processes for the Hadronic Forward (HF) calorimeter of the CMS, a Large Hadron Collier (LHC) experiment at CERN. We report the evaluation process of the candidate PMTs from three different manufacturers, the complete tests performed on the 2300 Hamamatsu PMTs which will be used in the HF calorimeter, and the details of the PMT Test Station that is in University of Iowa CMS Laboratories. In the second part we report the {Xi}{sub c}{sup +} lifetime measurement from SELEX, the charm hadro-production experiment at Fermilab. Based upon 301 {+-} 31 events from three di.erent decay channels, by using the binned maximum likelihood technique, we observe the lifetime of {Xi}{sub c}{sup +} as 427 {+-} 31 {+-} 13 fs.
Search for third generation vector leptoquarks in 1.96 TeV proton-antiproton collisions
The CDF experiment has searched for production of a third generation vector leptoquark (VLQ3) in the di-tau plus di-jet channel using 322 pb{sup -1} of Run II data. We review the production and decay theory and describe the VLQ3 model we have used as a benchmark. We study the analysis, including the data sample, triggers, particle identification, and event selection. We also discuss background estimates and systematic uncertainties. We have found no evidence for VLQ3 production and have set a 95% C.L. upper limit on the pair production cross section {sigma} to 344 fb, and exclude VLQ3 in the mass range m{sub VLQ3} > 317 GeV/c{sup 2}, assuming Yang-Mills couplings and Br(LQ3 {yields} b{tau}) = 1. If theoretical uncertainties on the cross section are taken into account, the results are {sigma} < 353 fb and m{sub VLQ3} > 303 GeV/c{sup 2}. For a VLQ3 with Minimal couplings, the upper limit on the cross section is {sigma} < 493 fb ({sigma} < 554 fb) and the lower limit on the mass is m{sub VLQ3} > 251 GeV/c{sup 2} (m{sub VLQ3} > 235 GeV/c{sup 2}) for the nominal (1{sigma} varied) theoretical expectation.
Fast Ignition Experimental and Theoretical Studies
We are becoming dependent on energy more today than we were a century ago, and with increasing world population and booming economies, sooner or later our energy sources will be exhausted. Moreover, our economy and welfare strongly depends on foreign oil and in the shadow of political uncertainties, there is an urgent need for a reliable, safe, and cheap energy source. Thermonuclear fusion, if achieved, is that source of energy which not only will satisfy our demand for today but also for centuries to come. Today, there are two major approaches to achieve fusion: magnetic confinement fusion (MFE) and inertial confinement fusion (ICF). This dissertation explores the inertial confinement fusion using the fast ignition concept. Unlike the conventional approach where the same laser is used for compression and ignition, in fast ignition separate laser beams are used. This dissertation addresses three very important topics to fast ignition inertial confinement fusion. These are laser-to-electron coupling efficiency, laser-generated electron beam transport, and the associated isochoric heating. First, an integrated fast ignition experiment is carried out with 0.9 kJ of energy in the compression beam and 70 J in the ignition beam. Measurements of absolute K{sub {alpha}} yield from the imploded core revealed that about 17% of the laser energy is coupled to the suprathermal electrons. Modeling of the transport of these electrons and the associated isochoric heating, with the previously determined laser-to-electron conversion efficiency, showed a maximum target temperature of 166 eV at the front where the electron flux is higher and the density is lower. The contribution of the potential, induced by charge separation, in opposing the motion of the electrons was moderate. Second, temperature sensitivity of Cu K{sub {alpha}} imaging efficiency using a spherical Bragg reflecting crystal is investigated. It was found that due to the shifting and broadening of …
A kinetic study of methanol synthesis in a slurry reactor using a CuO/ZnO/Al{sub 2}O{sub 3} catalyst
A kinetic model that describes the methanol production rate over a CuO/ZnO/AI{sub 2}0{sub 3} catalyst (United Catalyst L-951) at typical industrial operating conditions is developed using a slurry reactor. Different experiments are conducted in which the H{sub 2}/(CO+CO{sub 2}) ratio is equal to 2, 1, and 0.5, respectively, while the CO/CO{sub 2} ratio is held constant at 9. At each H{sub 2}/(CO+CO{sub 2}) ratio the space velocity is set at four different values in the range of 3000-13,000 1/hr kg{sub cat}. The effect of H{sub 2}/(CO+CO{sub 2}) ratio and space velocity on methanol production rate, conversions, and product composition is further investigated. The results indicate that the highest methanol production rate can be achieved at H{sub 2}/(CO+CO{sub 2}) ratio of 1 followed by H{sub 2}/(CO+CO{sub 2}) ratio of 0.5 and 2 respectively. The hydrogen and carbon monoxide conversions decrease with increasing space velocity for all H{sub 2}/(CO+CO{sub 2}) ratios tested. Carbon monoxide hydrogenation appears to be the main route to methanol at H{sub 2}/(CO+CO{sub 2}) ratio of 0.5 and 2. On the other hand, carbon dioxide hydrogenation appears to be the main route to methanol at H{sub 2}/(CO+CO{sub 2}) ratio of 1. At all H{sub 2}/(CO+CO{sub 2}) ratios, the extent of the reverse water gas shift reaction decreases with increasing space velocity. The effect of temperature on the kinetics is examined by using the same experimental approach at 508 K. It is found that a different reaction sequence takes place at each temperature. Also, a time on stream study is conducted simultaneously in order to investigate the characteristic of catalyst deactivation with time on stream. During the first 150 hours of time on stream, the catalyst loses approximately 2/3 of its initial activity before reaching a steady state activity.
Phase Identification in Reactive Sintering of Molybdenum Disilicide Composites
Molybdenum disilicide has been predominantly used for furnace heating elements, but recently there has been interest in its use for high temperature structural applications. The reason for this increased interest stems from its desirable characteristics which are a high melting point, relatively low density, good oxidation resistance, relatively good thermal conductivity and electronically conductive. The melting point of MoSi{sub 2} is approximately 2030{degrees}C as compared to a melting point of 1340{degrees}C for the Ni-based superalloys. This could potentially give MoSi{sub 2} a big advantage over the Ni-based superalloys in turbine applications because the operating temperature can be increased resulting in an increase in turbine efficiency and reduced emissions. The relatively low density (6.25g/cm{sup 3}) compared to the Ni-based superalloys (8.9 g/cm{sup 3}) is an important advantage in turbine applications because of the need for low weight. Good oxidation resistance stems from the ability of MoSi{sub 2} to form a protective SiO{sub 2} surface layer when exposed to oxygen. Another advantageous feature of MoSi{sub 2} is its thermal conductivity which is superior to Ni-based superalloys at low temperatures and comparable to the Ni-based superalloys at high temperatures. This allows heat to be dissipated at a rate better than ceramics and comparable to metals. MoSi{sub 2} is electrically conductive allowing it to be electro discharge machined. This is desirable since conventional ceramics are not generally conductive and cannot be electro discharge machined.
Scalable Computational Chemistry: New Developments and Applications
The computational part of the thesis is the investigation of titanium chloride (II) as a potential catalyst for the bis-silylation reaction of ethylene with hexaclorodisilane at different levels of theory. Bis-silylation is an important reaction for producing bis(silyl) compounds and new C-Si bonds, which can serve as monomers for silicon containing polymers and silicon carbides. Ab initio calculations on the steps involved in a proposed mechanism are presented. This choice of reactants allows them to study this reaction at reliable levels of theory without compromising accuracy. The calculations indicate that this is a highly exothermic barrierless reaction. The TiCl{sub 2} catalyst removes a 50 kcal/mol activation energy barrier required for the reaction without the catalyst. The first step is interaction of TiCl{sub 2} with ethylene to form an intermediate that is 60 kcal/mol below the energy of the reactants. This is the driving force for the entire reaction. Dynamic correlation plays a significant role because RHF calculations indicate that the net barrier for the catalyzed reaction is 50 kcal/mol. They conclude that divalent Ti has the potential to become an important industrial catalyst for silylation reactions. In the programming part of the thesis, parallelization of different quantum chemistry methods is presented. The parallelization of code is becoming important aspects of quantum chemistry code development. Two trends contribute to it: the overall desire to study large chemical systems and the desire to employ highly correlated methods which are usually computationally and memory expensive. In the presented distributed data algorithms computation is parallelized and the largest arrays are evenly distributed among CPUs. First, the parallelization of the Hartree-Fock self-consistent field (SCF) method is considered. SCF method is the most common starting point for more accurate calculations. The Fock build (sub step of SCF) from AO integrals is also often used to avoid …
THE PHOTOCHEMISTRY AND BIOCHEMISTRY OF AROMATIC N-OXIDES.
No Description Available.
Measurement of Single Spin Asymmetries in Semi-Inclusive Deep Inelastic Scattering Reaction n↑ ( e,e' pi{sup +}) X at Jefferson Lab
What constitutes the spin of the nucleon? The answer to this question is still not completely understood. Although we know the longitudinal quark spin content very well, the data on the transverse quark spin content of the nucleon is still very sparse. Semi-inclusive Deep Inelastic Scattering (SIDIS) using transversely polarized targets provide crucial information on this aspect. The data that is currently available was taken with proton and deuteron targets. The E06-010 experiment was performed at Jefferson Lab in Hall-A to measure the single spin asymmetries in the SIDIS reaction n↑(e, e′π{sup ±}/K{sup ±})X using transversely polarized {sup 3}He target. The experiment used the continuous electron beam provided by the CEBAF accelerator with a beam energy of 5.9 GeV. Hadrons were detected in a high-resolution spectrometer in coincidence with the scattered electrons detected by the BigBite spectrometer. The kinematic coverage focuses on the valence quark region, x = 0.19 to 0.34, at Q{sup 2} = 1.77 to 2.73 (GeV/c){sup 2}. This is the first measurement on a neutron target. The data from this experiment, when combined with the world data on the proton and the deuteron, will provide constraints on the transversity and Sivers distribution functions on both the u and d-quarks in the valence region. In this work we report on the single spin asymmetries in the SIDIS n↑(e, e′π{sup +})X reaction.
Thermionic converter emitter support arrangement
This document discusses a support provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs. 7 figs.
Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation sample introduction and monodisperse dried microparticulate injection
The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio {sup 63}Cu{sup +}/{sup 65}Cu{sup +} is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurements for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio {sup 52}Cr{sup +}/{sup 53}Cr{sup +} (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr{sup +} signal to 0.12% for the ratio of {sup 51}V{sup +} to {sup 52}Cr{sup +}. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li{sup +} signal becomes apparent. Space charge effects are consistent with the disturbances seen.
Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils
The discovery that ultra-intense laser pulses (I > 10{sup 18} W/cm{sup 2}) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 10{sup 18} W/cm{sup 2}), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by U{sub p} = ([1 + I{lambda}{sup 2}/1.3 x 10{sup 18}]{sup 1/2} - 1) m{sub o}c{sup 2}, where I{lambda}{sup 2} is the irradiance in W {micro}m{sup 2}/cm{sup 2} and m{sub o}c{sup 2} is the electron rest mass. At laser irradiance of I{lambda}{sup 2} {approx} 10{sup 20} W {micro}m{sup 2}/cm{sup 2}, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target. In this thesis we present several experiments that study the accelerated ions by affecting the contamination layer …
Laser Ion Acceleration from the Interaction of Ultra-Intense laser Pulse with thi foils
The discovery that ultra-intense laser pulses (I > 10{sup 18} W/cm{sup 2}) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 10{sup 18} W/cm{sup 2}), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by U{sub p} = ([1 + I{lambda}{sup 2}/1.3 x 10{sup 18}]{sup 1/2} - 1) m{sub o}c{sup 2}, where I{lambda}{sup 2} is the irradiance in W{micro}m{sup 2}/cm{sup 2} and m{sub o}c{sup 2} is the electron rest mass.At laser irradiance of I{lambda}{sup 2} {approx} 10{sup 20} W{micro}m{sup 2}/cm{sup 2}, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target.
CARBON-13 NMR STUDIES OF LIQUID CRYSTALS
High resolution, proton decoupled {sup 13}C nmr are observed for a series of neat nematic liquid crystals, the p-alkoxyazoxybenzenes, and a smectic-A liquid crystal, diethylazoxydibenzoate in a magnetic field of 23 kG. The (uniaxial) order parameters S = <P{sub 2}(cos{theta})> are found to be about 0.4 and 0.9 for the nematic and smectic-A phase respectively at the clearing points. The order parameter increases with decreasing temperature in the nematic phase but is constant, or nearly so, with temperature in the smectic-A phase. In the nematic series studied, the ordering exhibits an even-odd alternation along the series and qualitative agreement with a recent theory due to Marcelja is found. In both phases, the spectra show that the molecule rotates rapidly about its long axis. Tentative conclusions about molecular conformational motion and {sup 14}N spin relaxation are presented for both nematic and smectic-A phases. In the smectic-A phase, the sample is rotated about an axis perpendicular to H{sub 0} and the resulting spectra are discussed. The theory of observed chemical shifts in liquid crystals is treated in an appendix. Equations are derived which relate the nmr spectra of liquid-crystals to the order parameters. A model for the smectic-C phase due to Luz and Meiboom and Doane is described and lineshapes are determined on the basis of this model for special cases. Experiments on smectic-C liquid crystals are currently underway for comparison with the theory. Also treated in an appendix is the dependence of the order parameters on the molecular potential which give rise to the various degrees of order in the different liquid crystalline phases. To a good approximation the functional dependence of the order parameters on the molecular potential is shown to be a simple one in the limit of small tilt angle in the smectic-C phase.
Numerical studies of mass transfer and accretion in x-ray binary systems
No Description Available.
Solid phase epitaxial regrowth of (100)GaAs
This thesis showed that low temperature (250 C) SPE of stoichiometrically balanced ion implanted GaAs layers can yield good epitaxial recovery for doses near the amorphization threshold. For 250 C anneals, most of the regrowth occurred in the first 10 min. HRTEM revealed much lower stacking fault density in the co-implanted sample than in the As-only and Ga-only samples with comparable doses. After low temp annealing, the nonstoichiometric samples had a large number of residual defects. For higher dose implants, very high temperatures (700 C) were needed to remove residual defects for all samples. The stoichiometrically balanced layer did not regrow better than the Ga-only and As-only samples. The co-implanted sample exhibited a thinner amorphous layer and a room temperature (RT) annealing effect. The amorphous layer regrew about 5 nm, suggesting that stoichiometrically balanced amorphous layers can regrow even at RT. Mechanisms for solid phase crystallization in (100)GasAs is discussed: nucleation and growth of randomly oriented crystallites and SPE. These two mechanisms compete in compound semiconductors at much lower temperatures than in Si. For the low dose As-only and Ga-only samples with low-temp anneals, both mechanisms are active. For this amorphization threshold dose, crystallites remain in the amorphous layer for all as-implants. 250 C annealing showed recrystallization from the surface and bulk for these samples; for the co-implant, the mechanism is not evident.
Ion Implantation of In{sub 0.53}Ga{sub 0.47}As
No Description Available.
On-line gamma--gamma angular correlation studies of cascades in $sup 140$Ba, $sup 90$Sr, and $sup 140$Cs
No Description Available.
Mechanisms for fatigue and wear of polysilicon structural thinfilms
Fatigue and wear in micron-scale polysilicon structural films can severely impact the reliability of microelectromechanical systems (MEMS). Despite studies on fatigue and wear behavior of these films, there is still an on-going debate regarding the precise physical mechanisms for these two important failure modes. Although macro-scale silicon does not fatigue, this phenomenon is observed in micron-scale silicon. It is shown that for polysilicon devices fabricated in the MUMPs foundry and SUMMiT process stress-lifetime data exhibits similar trends in ambient air, shorter lifetimes in higher relative humidity environments and no fatigue failure at all in high vacuum. Transmission electron microscopy of the surface oxides of the samples show an approximate four-fold thickening of the oxide at stress concentrations after fatigue failure, but no thickening after fracture in air or after fatigue cycling in vacuo. It is found that such oxide thickening and fatigue failure (in air) occurs in devices with initial oxide thicknesses of {approx}4-20 nm. Such results are interpreted and explained by a reaction layer fatigue mechanism; specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure. Polysilicon specimens from the SUMMiT process are used to study wear mechanisms in micron-scale silicon in ambient air. Worn parts are examined by analytical scanning and transmission electron microscopy, while temperature changes are monitored using infrared microscopy. These results are compared with the development of values of static coefficients of friction (COF) with number of wear cycles. Observations show amorphous debris particles ({approx}50-100 nm) created by fracture through the silicon grains ({approx}500 nm), which subsequently oxidize, agglomerate into clusters and create plowing tracks. A nano-crystalline layer ({approx}20-200 nm) forms at worn regions. No dislocations or extreme temperature increases are found, ruling out plasticity and temperature-assisted mechanisms. The COF reaches a …
Electromagnetic and mechanical design of gridded radio-frequency cavity windows
Electromagnetic, thermal and structural analyses of radio-frequency (RF) cavities were performed as part of a developmental RF cavity program for muon cooling. RF cavities are necessary to provide longitudinal focusing of the muons and to compensate for their energy loss. Closing the cavity ends by electrically conducting windows reduces the power requirement and increases the on-axis electric field for a given maximum surface electric field. Many factors must be considered in the design of RF cavity windows. RF heating can cause the windows to deform in the axial direction of the cavity. The resulting thermal stresses in the window must be maintained below the yield stress of the window material. The out-of-plane deflection must be small enough so that the consequent frequency shift is tolerable. For example, for an 805 MHz cavity, the out-of-plane deflection must be kept below 25 microns to prevent the frequency of the cavity from shifting more than 10 kHz. In addition, the window design should yield smooth electric and magnetic fields, terminate field leakage beyond the window, and minimize beam scattering. In the present thesis, gridded-tube window designs were considered because of their high structural integrity. As a starting point in the analysis, a cylindrical pillbox cavity was considered as a benchmark problem. Analytical and finite element solutions were obtained for the electric and magnetic fields, power loss density, and temperature profile. Excellent agreement was obtained between the analytical and finite element results. The finite element method was then used to study a variety of gridded-tube windows. It was found that cooling of the gridded-tube windows by passing helium gas inside the tubes significantly reduces the out-of-plane deflection and the thermal stresses. Certain tube geometries and grid patterns were found to satisfy all of the design requirements.
Heavy-Ion Elastic Scattering
The elastic scattering of C/sup 12/ ions from Ar, Fe, Ni, Ag/sup 107/ In, and Ta was measured as a function of angle, at a laboratory-system energy of 124.5 Mev with the Berkeley heavy-ion linear accelerator. The experimental equipment and techniques are discussed. The angular distributions show the same general behavior as previous heavy-ion elastic scattering experiments. The experimental data were analyzed with the semiclassical Blair model as modified by McIntyre. Very good agreement with experiment was obtained. The measurements were taken with 1% statistics in order to study the structure of the angular distributions in greater detail, because only by fitting the details in the structure was it possible to obtdin unambiguous sets of parameters. The parameters indicated a nuclear radius of 1.45A/sup 1/3/ x 10/sup -13/ cm, and a nearly constant surface thick ness of 1.6 x 10/sup -13/ cm. Total reaction cross sections were obtained. A rainbow-model analysis by Goldman of the data is given. Existing alpha - and heavy-ion scattering data were analyzed with the McIntyre model and compared with previous optical-model analyses of the same data. It was found that, by independent analysis, the two models give the same imaginary phase shifts for all partial waves. The real phase shifts are identical above a certain lth partial wave, but differ widely below this 1 value. It is shown that in the region of disagreement the real part of the phase shifts is irrelevant to the calculation of the cross section. (auth)
An investigation of factors affecting the performance of laboratory fume hoods
A `user tracer gas test` was performed on laboratory hoods, with a human subject standing in front of the hood, to assess hood containment ability. The relationship of face velocity and cross draft variables to hood containment ability is investigated. The ability of these variables and other tests, such as smoke challenges or tracer gas tests performed with a manikin at the hood, to predict the results of the user tracer gas test is evaluated. All of the laboratory hoods tested in this study were identical bench top bypass hoods with horizontally sliding sashes. A face velocity traverse, cross draft measurements, a pitot traverse to measure exhaust flow, a smoke test, a manikin tracer gas test, and a user tracer gas test were performed on each hood in several different sash positions. Based on the data collected, face velocity, its distribution and variability, and the magnitude of cross drafts relative to face velocity are important variables in determining hood leakage. `Unblocked` vortices, formed such that no physical barrier exists between the vortex and room air or a person in front of the hood, are identified as important sites of leakage. For the hoods evaluated in this study, unblocked vortices were observed along the beveled side edges. The data support the hypothesis that in the presence of a person standing in front of the hood, leakage is more likely to occur if unblocked vortices are formed than if all vortices are blocked. Evidence suggests that cross drafts are more likely to cause leakage when flowing in a direction that may cause separated flow along a beveled edge of the hood and thereby augment the unblocked vortices along the edge. Results indicate that smoke tests, manikin tracer gas tests, and average face velocity all serve as useful monitoring techniques. Face velocity measurements …
Thermochemical decomposition and isomerization of polysilacyclodialkynes and thermochemical and photochemical decomposition of cyclopolysilylketenes
Kinetic data for elimination of silylene supports formation of a ``tighter`` transition state, indicating a silacyclopropene intermediate. This extends the silacyclopropene mechanism to the cyclicdialkyne system and validates the consistency of the mechanism for silylakynes, in general. Investigation into the other possible silacyclopropene product established the instability of the product. The work with silylketenes proved that an inherent difference exists between reactivity of monosilyl-substituted ketenes and polysilyl-substituted ketenes. Although the mechanism for thermal decomposition of bis(silyl)ketenes can be modified to account for the unexpected silylene elimination products, reasons for the difference are limited to speculation. The photochemistry of silylketenes has not been previously studied, so a model system does not exist for comparison with our polysilylketene work. The photochemical experimentation suggests that the photochemistry and thermochemistry of polysilylketenes is not the same. A more extensive study of the mechanism of the systems covered in this research as well as with monosilyl-substituted systems is needed.
Electron Scattering From Simple Atomic and Molecular Systems: A Study of the Phenomenological and Microscopic Optical Models.
No Description Available.
Iterative electromagnetic Born inversion applied to earth conductivity imaging
This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (< 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.
Distribution-independent hierarchicald N-body methods
The N-body problem is to simulate the motion of N particles under the influence of mutual force fields based on an inverse square law. The problem has applications in several domains including astrophysics, molecular dynamics, fluid dynamics, radiosity methods in computer graphics and numerical complex analysis. Research efforts have focused on reducing the O(N{sup 2}) time per iteration required by the naive algorithm of computing each pairwise interaction. Widely respected among these are the Barnes-Hut and Greengard methods. Greengard claims his algorithm reduces the complexity to O(N) time per iteration. Throughout this thesis, we concentrate on rigorous, distribution-independent, worst-case analysis of the N-body methods. We show that Greengard`s algorithm is not O(N), as claimed. Both Barnes-Hut and Greengard`s methods depend on the same data structure, which we show is distribution-dependent. For the distribution that results in the smallest running time, we show that Greengard`s algorithm is {Omega}(N log{sup 2} N) in two dimensions and {Omega}(N log{sup 4} N) in three dimensions. We have designed a hierarchical data structure whose size depends entirely upon the number of particles and is independent of the distribution of the particles. We show that both Greengard`s and Barnes-Hut algorithms can be used in conjunction with this data structure to reduce their complexity. Apart from reducing the complexity of the Barnes-Hut algorithm, the data structure also permits more accurate error estimation. We present two- and three-dimensional algorithms for creating the data structure. The multipole method designed using this data structure has a complexity of O(N log N) in two dimensions and O(N log{sup 2} N) in three dimensions.
Back to Top of Screen