UNT Libraries Government Documents Department - 147 Matching Results

Search Results

Numerical experiments on the probability of seepage intounderground openings in heterogeneous fractured rock

Description: An important issue for the performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of this rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, because it is located in thick, unsaturated, fractured tuff formations. Underground opening in unsaturated media might act as capillary barriers, diverting water around them. In the present work, they study the potential rate of seepage into drifts as a function of the percolation flux at Yucca Mountain, based on a stochastic model of the fractured rock mass in the drift vicinity. A variety of flow scenarios are considered, assuming present-day and possible future climate conditions. They show that the heterogeneity in the flow domain is a key factor controlling seepage rates, since it causes channelized flow and local ponding in the unsaturated flow field.
Date: April 15, 1998
Creator: Birkholzer, J.; Li, G.; Tsang, C.F. & Tsang, Y.

Pyrite oxidation in saturated and Unsaturated Porous Media Flow: AComparison of alternative mathematical modeling approaches

Description: Pyrite (FeS{sub 2}) is one of the most common naturally occurring minerals that is present in many subsurface environments. It plays an important role in the genesis of enriched ore deposits through weathering reactions, is the most abundant sulfide mineral in many mine tailings, and is the primary source of acid drainage from mines and waste rock piles. The pyrite oxidation reaction serves as a prototype for oxidative weathering processes with broad significance for geoscientific, engineering, and environmental applications. Mathematical modeling of these processes is extremely challenging because aqueous concentrations of key species vary over an enormous range, oxygen inventory and supply are typically small in comparison to pyrite inventory, and chemical reactions are complex, involving kinetic control and microbial catalysis. We present the mathematical formulation of a general multi-phase advective-diffusive reactive transport model for redox processes. Two alternative implementations were made in the TOUGHREACT and TOUGH2-CHEM simulation codes which use sequential iteration and simultaneous solution, respectively. The simulators are applied to reactive consumption of pyrite in (1) saturated flow of oxidizing water, and (2) saturated-unsaturated flow in which oxygen transport occurs in both aqueous and gas phases. Geochemical evolutions predicted from different process models are compared, and issues of numerical accuracy and efficiency are discussed.
Date: February 15, 1998
Creator: Xu, Tianfu; White, Stephen P. & Pruess, Karsten

Effects on Occupants of Enhanced Particle Filtration in a non-problem office environment: A Double-Blind Crossover Intervention Study

Description: Workers in indoor environments often complain of symptoms, such as eye and nose irritation, headache, and fatigue, which improve away from work. Exposures causing such complaints, sometimes referred to as sick building syndrome, generally have not been identified. Evidence suggests these worker symptoms are related to chemical, microbiological, physical, and psychosocial exposures not well characterized by current methods. Most research in this area has involved cross-sectional studies, which are limited in their abilities to show causal connections. Experimental studies have also been conducted which, by changing one factor at a time to isolate its effects, can demonstrate benefits of an environmental intervention even before exposures or mechanisms are understood. This study was prompted by evidence that particulate contaminants may be related to acute occupant symptoms and discomfort. The objective was to assess, with a double-blind, double crossover intervention design, whether improved removal of small airborne particles by enhanced central filtration would reduce symptoms and discomfort.
Date: June 15, 1998
Creator: Mendell, M.J.; Fisk, W.J.; Petersen, M.; Hines, C.J.; Faulkner, D.; Deddens, J.A. et al.

Hanford Tanks Initiative cone penetrometer siting plan and progress report

Description: The HTI subsurface characterization task will use the Hanford Cone Penetrometer platform (CPP) to deploy soil sensor and sampling probes into the vadose zone/soils around AX-104 during FY-99. This Siting Plan describes activities and actions undertaken in support of CPP deployment: deployment goals, maps of the deployment sites/locations, pre-activity (siting-related) documentation tasks, a summary of activities that have been completed to date, and an estimated schedule of additional planned activities.
Date: October 15, 1998
Creator: IWATATE, D.F.

Hanford tank initiative cone penetrometer stand alone grouting module

Description: The HTI subsurface characterization task will use the Hanford Cone Penetrometer platform (CPP) to deploy contaminant sensor and soil sampling probes into the vadose zone surrounding SST 241-AX-104. Closure of the resulting penetration holes may be stipulated by WAC requirements. A stand alone grouting capability deployable by the CPP has been developed. This qualification test plan defines testing of this capability to be performed at the Immobilized Low Activity Waste Disposal Complex.
Date: October 15, 1998
Creator: CALLAWAY, W.S.

Transuranic isotopic analysis using gamma rays

Description: Transuranic waste typically emits gamma rays that are characteristic of the isotopic composition of the materials. If the area of the gamma ray photopeaks in a High Purity Ge (HPGe) spectrum can be accurately determined and if the gamma ray/x-ray branching ratios and half-lives for the radionuclides in the sample are known the relative concentration of each isotope in the waste can be determined using tomographic techniques. Methods used to accurately determine these photopeaks usually requires a computer code that does multi-peak analysis and unfolding of a given part of the gamma-ray spectrum. Computer techniques allow an accurate determination of the photopeaks and hence the isotopic composition of the waste material. These computer techniques can be automated for different spectra within a wide range of possible isotopic compositions. To improve photopeak statistics all of the spectra taken in a tomographic survey of the sample are summed and are used in the isotopic analysis. The method, accuracy, and limitations of this type of isotopic analysis system will be discussed. The gamma ray acquisition system is currently being upgraded with multiple HPGe detectors to improve the counting statistics obtainable in a given amount of time. The results of the DOE performance evaluations and the progress of the multiple detector upgrade will be discussed.
Date: October 15, 1998
Creator: Clark, D & Decman, D

String duality and novel theories without gravity

Description: We describe some of the novel 6d quantum field theories which have been discovered in studies of string duality. The role these theories (and their 4d descendants) may play in alleviating the vacuum degeneracy problem in string theory is reviewed. The DLCQ of these field theories is presented as one concrete way of formulating them, independent of string theory.
Date: January 15, 1998
Creator: Kachru, Shamit

In-Situ Tritium Beta Detector

Description: The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye. Based on ...
Date: April 15, 1998
Creator: Berthold, J. W. & Jeffers, L. A.

Gigagauss magnetic field generation from high intensity laser solid interactions

Description: Intense laser (>10<sup>21</sup> W/cm2 ) sources using pulse compression techniques in the sub-picosecond time frame have been used to create dynamic electric field strenghs in excess of 100 Megavolts/micron with associated magnetic field strengths in the Gigagauss regime. We have begun a series of experiments using the Petawatt Laser system at LLNL to determine the potential of these sources for a variety of applications. Hot electron spectra from laser-target interactions in Au have been measured with energies up to 100 MeV. Hot x-ray production has been measured using filtered thermoluminescent dosimeters and threshold nuclear activation ({gamma},n) from giant resonance interactions. High resolution radiographs through a {rho}r > 165 gm/cm&sup2; have been obtained. Dose levels in the x-ray band from 2-8 MeV have been measured at the level of several Rads at one meter from the target for a single pulse. The physics of these sources and the scaling relationships and laser technology required to provide high magnetic fields will be discussed. Results of preliminary magnetic field calculations will be presented along with potential applications of this technology and estimates of the fundamental scaling limits for future development.
Date: October 15, 1998
Creator: Cowan, T; Moran, M; Hammer, J; Hatchett, S; Hunt, A; Key, M H et al.

Decontamination of Radionuclides from Concrete During and After Thermal Treatment

Description: The objective was to clarify from the theoretical viewpoint the mechanical, diffusional, thermodynamic and electromagnetic aspects of the decontaminations problem, by means of developing a powerful computational model to evaluate the effect of a very rapid heating regime on the on the contaminated concrete walls or slabs. The practical objective was to assess the feasibility of the microwave heating scheme envisaged and determine its suitable parameters such as power and duration. This objective was complementary to, but separate from, the chemical and nuclear aspects of long-time processes that led to the contamination and various conceivable alternative methods of decontamination which were investigated by Dr. Brian Spalding of Oak Ridge National Laboratory, with whom the start-up phase of this project was coordinated.
Date: September 15, 1998
Creator: Bazant, Z. P.

Status and update of the National Ignition Facility radiation effects testing program

Description: We are progressing in our efforts to make the National Ignition Facility (NIF) available to the nation as a radiation effects simulator to support the Services needs for nuclear hardness and survivability testing and validation. Details of our program were summarized in a paper presented at the 1998 HEART Conference. This paper describes recent activities and up-dates plans for NIF radiation effects testing.
Date: September 15, 1998
Creator: Davis, J; Serduke, F & Wuest, C R

Two Methods for a First Order Hardware Gradiometer Using Two HTS SQUID's

Description: Two different systems for noise cancellation (first order gradiometers) have been developed using two similar high temperature superconducting (HTS) SQUIDs. ''Analog'' gradiometry is accomplished in hardware by either (1) subtracting the signals from the sensor and background SQUIDs at a summing amplifier (parallel technique) or (2) converting the inverted background SQUID signal to a magnetic field at the sensor SQUID (series technique). Balance levels achieved are 2000 and 1000 at 20 Hz for the parallel and series methods respectively. The balance level as a function of frequency is also presented. The effect which time delays in the two sets of SQUID electronics have on this balance level is presented and discussed.
Date: September 15, 1998
Creator: Espy, M.A.; Flynn, E.R.; Kraus, R.H., Jr. & Matlachov, A.