UNT Libraries Government Documents Department - 2,226 Matching Results

Search Results

Analytical Investigation of Icing Limit for Diamond-Shaped Airfoil in Transonic and Supersonic Flow

Description: Calculations have been made for the icing limit of a diamond airfoil at zero angle of attack in terms of the stream Mach number, stream temperature, and pressure altitude. The icing limit is defined as a wetted-surface temperature of 320 F and is related to the stream conditions by the method of Hardy. The results show that the point most likely to ice on the airfoil lies immediately behind the shoulder and is subject to possible icing at Mach numbers as high as 1.4.
Date: January 1, 1953
Creator: Callaghan, Edmund E. & Serafini, John S.

Determination of Shapes of Boattail Bodies of Revolution for Minimum Wave Drag

Description: By use of an approximate equation for the wave drag of slender bodies of revolution in a supersonic flow field, the optimum shapes of certain boattail bodies are determined for minimum wave drag. The properties of three specific families of bodies are determined, the first family consisting of bodies having a given length and base area and a contour passing through a prescribed point between the nose and base, the second family having fixed length, base area, and maximum area, and the third family having given length, volume, and base area. The method presented is easily generalized to determine minimum-wave-drag profile shapes which have contours that must pass through any prescribed number of points. According to linearized theory, the optimum profiles are found to have infinite slope at the nose but zero radius of curvature so that the bodies appear to have pointed noses, a zero slope at the body base, and no variation of wave drag with Mach number. For those bodies having a specified intermediate.diameter (that is, location and magnitude given), the maximum body diameter is shown to be larger, in general, than the specified diameter. It is also shown that, for bodies having a specified maximum diameter, the location of the maximum diameter is not arbitrary but is determined from the ratio of base diameter to maximum diameter.
Date: November 1, 1951
Creator: Adams, Mac C.

Empirical relation between induced velocity, thrust, and rate of descent of a helicopter rotor as determined by wind-tunnel tests on four model rotors

Description: The empirical relation between the induced velocity, thrust, and rate of vertical descent of a helicopter rotor was calculated from wind tunnel force tests on four model rotors by the application of blade-element theory to the measured values of the thrust, torque, blade angle, and equivalent free-stream rate of descent. The model tests covered the useful range of C(sub t)/sigma(sub e) (where C(sub t) is the thrust coefficient and sigma(sub e) is the effective solidity) and the range of vertical descent from hovering to descent velocities slightly greater than those for autorotation. The three bladed models, each of which had an effective solidity of 0.05 and NACA 0015 blade airfoil sections, were as follows: (1) constant-chord, untwisted blades of 3-ft radius; (2) untwisted blades of 3-ft radius having a 3/1 taper; (3) constant-chord blades of 3-ft radius having a linear twist of 12 degrees (washout) from axis of rotation to tip; and (4) constant-chord, untwisted blades of 2-ft radius. Because of the incorporation of a correction for blade dynamic twist and the use of a method of measuring the approximate equivalent free-stream velocity, it is believed that the data obtained from this program are more applicable to free-flight calculations than the data from previous model tests.
Date: October 1, 1951
Creator: Castles, Walter, Jr. & Gray, Robin B.

An Investigation Utilizing an Electrical Analogue of Cyclic Deicing of Hollow Steel Propellers with Internal Electric Heaters

Description: A study has been made of the heating requirements for the cyclic de?icing of hollow steel propellers fitted with two types of internal electric heaters. Solutions to the transient?teat?flow equations depicting the cyclic de?icing of propellers were obtained by use of an electrical analogy. The study showed the impracticability of using an internal tubular heater and illustrated the advantages of employing an internal shoe?type heater, which distributes the heat more evenly to the blade surface. The importance of minimizing the thermal inertia of the system was demonstrated, and the magnitude of reductions in the total energy requirement made possible through reductions in the heating period was indicated.
Date: October 1, 1953
Creator: Neel, Carr B., Jr.

The spanwise distribution of lift for minimum induced drag of wings having a given lift and a given bending moment

Description: The problem of the minimum induced drag of wings having a given lift and a given span is extended to include cases in which the bending moment to be supported by the wing is also given. The theory is limited to lifting surfaces traveling at subsonic speeds. It is found that the required shape of the downwash distribution can be obtained in an elementary way which is applicable to a variety of such problems. Expressions for the minimum drag and the corresponding spanwise load distributions are also given for the case in which the lift and the bending moment about the wing root are fixed while the span is allowed to vary. The results show a 15-percent reduction of the induced drag with a 15-percent increase in span as compared with results for an elliptically loaded wing having the same total lift and bending moment.
Date: December 1, 1950
Creator: Jones, R. T.

Correlations Among Ice Measurements, Impingement Rates Icing Conditions, and Drag Coefficients for Unswept NACA 65A004 Airfoil

Description: An empirical relation has been obtained by which the change in drag coefficient caused by ice formations on an unswept NACA 65AO04 airfoil section can be determined from the following icing and operating conditions: icing time, airspeed, air total temperature, liquid-water content, cloud droplet impingement efficiencies, airfoil chord length, and angles of attack. The correlation was obtained by use of measured ice heights and ice angles. These measurements were obtained from a variety of ice formations, which were carefully photographed, cross-sectioned, and weighed. Ice weights increased at a constant rate with icing time in a rime icing condition and at progressively increasing rates in glaze icing conditions. Initial rates of ice collection agreed reasonably well with values predicted from droplet impingement data. Experimental droplet impingement rates obtained on this airfoil section agreed with previous theoretical calculations for angles of attack of 40 or less. Disagreement at higher angles of attack was attributed to flow separation from the upper surface of the experimental airfoil model.
Date: February 1, 1958
Creator: Gray, Vernon H.

An Investigation Utilizing an Electrical Analogue of Cyclic Deicing of a Hollow Steel Propeller with an External Blade Shoe

Description: A study has been made of the heat requirement for the cyclic de-icing of hollow steel propellers fitted with external blade heating shoes. Solutions to the equations for the heat flow in cyclic heating of propellers were obtained, using an electrical analogy. The study showed how the energy requirement for propeller de-icing with existing blade shoes could be decreased, and illustrated the effect of blade-shoe design on the energy requirement. It was demonstrated, for example, that by increasing the heating intensity and decreasing the heating period from those currently used the energy requirement could be decreased in the order of 60 percent. ' In addition, ft was shown that heating requirements could be decreased further, by as much as 60 percent, through proper design of the shoes. The' investigation also showed the energy requirement to increase with decreasing liquid-water content and air temperature. Uncertainties as to the exact values of convective heat-transfer coefficient prevailing over the surface of the blade and ice layer resulted in uncertainties of approximately proportional magnitude in the values of required heating intensity.
Date: December 1, 1952
Creator: Neel, Carr B., Jr.

Variation of Local Liquid-Water Concentration About an Ellipsoid of Fineness Ratio 10 Moving in a Droplet Field

Description: Trajectories of water droplets about an ellipsoid of revolution with a fineness ratio of 10 (10 percent thick) in flight through a droplet field were computed with the aid of a differential analyzer. Analyses of these trajectories indicate that the local concentration of liquid water at various points about an ellipsoid varies considerably and under some conditions may be several times the free-stream concentration. Curves of the local concentration factor as a function of spatial position were obtained and are presented in terms of dimensionless parameters that describe flight and atmospheric conditions. The data indicate that the expected local concentration factors should be considered when choosing the location of devices that protrude into the stream from aircraft fuselages or missiles, or when determining antiicing heat requirements for the protection of these devices.
Date: April 1, 1955
Creator: Brun, Rinaldo J. & Dorsch, Robert G.

Droplet Impingement and Ingestion by Supersonic Nose Inlet in Subsonic Tunnel Conditions

Description: The amount of water in cloud droplet form ingested by a full-scale supersonic nose inlet with conical centerbody was measured in the NACA Lewis icing tunnel. Local and total water impingement rates on the cowl and centerbody surfaces were also obtained. All measurements were made with a dye-tracer technique. The range of operating and meteorological conditions studied was: angles of attack of 0 deg and 4.2 deg, volume-median droplet diameters from about 11 to 20 microns, and ratios of inlet to free-stream velocity from about 0.4 to 1.8. Although the inlet was designed for supersonic (Mach 2.0) operation of the aircraft, the tunnel measurements were confined to a free-stream velocity of 156 knots (Mach 0.237). The data are extendable to other subsonic speeds and droplet sizes by dimensionless impingement parameters. Impingement and ingestion efficiencies are functions of the ratio of inlet to free-stream velocity as well as droplet size. For the model and range of conditions studied, progressively increasing the inlet velocity ratio from less than to greater than 1.0 increased the centerbody impingement efficiency and shifted the cowl impingement region from the inner- to outer-cowl surfaces, respectively. The ratio of water ingested by the inlet plane to that contained in a free-stream tube of cross section equal to that at the inlet plane also increased with increasing inlet velocity ratio. Theoretically calculated values of inlet water (or droplet) ingestion are in good agreement with experiment for annular inlet configurations.
Date: May 1, 1958
Creator: Gelder, Thomas F.

A Dye-Tracer Technique for Experimentally Obtaining Impingement Characteristics of Arbitrary Bodies and a Method for Determining Droplet Size Distribution

Description: A dye-tracer technique has been developed whereby the quantity of dyed water collected on a blotter-wrapped body exposed to an air stream containing a dyed-water spray cloud can be colorimetrically determined in order to obtain local collection efficiencies, total collection efficiency, and rearward extent of impingement on the body. In addition, a method has been developed whereby the impingement characteristics obtained experimentally for a body can be related to theoretical impingement data for the same body in order to determine the droplet size distribution of the impinging cloud. Several cylinders, a ribbon, and an aspirating device to measure cloud liquid-water content were used in the studies presented herein for the purpose of evaluating the dye-tracer technique. Although the experimental techniques used in the dye-tracer technique require careful control, the methods presented herein should be applicable for any wind tunnel provided the humidity of the air stream can be maintained near saturation.
Date: March 1, 1955
Creator: VonGlahn, Uwe H.; Gelder, Thomas F. & Smyers, William H., Jr.

Effect of Ice and Frost Formations on Drag of NACA 65(sub 1) -212 Airfoil for Various Modes of Thermal Ice Protection

Description: The effects of primary and. runback icing and frost formations on the drag of an 8-foot-chord NACA 651-212 airfoil section were investigated over a range of angles of attack from 20 to 80 and airspeeds up to 260 miles per hour for icing conditions with liquid-water contents ranging from 0.25 to 1.4 grams per cubic meter and datum air temperatures of -30 to 30 F. The results showed that glaze-ice formations, either primary or runback, on the upper surface near the leading edge of the airfoil caused large and rapid increases in drag, especially at datum air temperatures approaching 32 F and in the presence of high rates of water catch. Ice formations at lower temperatures (rime ice) did not appreciably increase the drag coefficient over the initial (standard roughness) drag coefficient. Cyclic de-icing of the primary Ice formations on the airfoil leading-edge section permitted the drag coefficient to return almost to the bare airfoil drag value. Runback icing on the lower surface did not present a serious drag problem except when heavy spanwise ridges of runback ice occurred aft of the heatable area. Frost formations caused rapid and large increases in drag with incipient stalling of the airfoil.
Date: June 1, 1953
Creator: Gray, V. H. & Von Glahn, U. H.

A Method for Determining Cloud-Droplet Impingement on Swept Wings

Description: The general effect of wing sweep on cloud-droplet trajectories about swept wings of high aspect ratio moving at subsonic speeds is discussed. A method of computing droplet trajectories about yawed cylinders and swept wings is presented, and illustrative droplet trajectories are computed. A method of extending two-dimensional calculations of droplet impingement on nonswept wings to swept wings is presented. It is shown that the extent of impingement of cloud droplets on an airfoil surface, the total rate of collection of water, and the local rate of impingement per unit area of airfoil surface can be found for a swept wing from two-dimensional data for a nonswept wing. The impingement on a swept wing is obtained from impingement data for a nonswept airfoil section which is the same as the section in the normal plane of the swept wing by calculating all dimensionless parameters with respect to flow conditions in the normal plane of the swept wing.
Date: April 1, 1953
Creator: Dorsch, Robert G. & Brun, Rinaldo J.

A Method for Rapid Determination of the Icing Limit of a Body in Terms of the Stream Conditions

Description: The effects of existing frictional heating were analyzed to determine the conditions under which ice formations on aircraft surfaces can be prevented. A method is presented for rapidly determining by means of charts the combination of-Mach number, altitude, and stream temperature which will maintain an ice-free surface in an icing cloud. The method can be applied to both subsonic and supersonic flow. The charts presented are for Mach numbers up to 1.8 and pressure altitudes from sea level to 45,000 feet.
Date: March 1, 1953
Creator: Callaghan, Edmund E. & Serafini, John S.

Penetration of Air Jets Issuing from Circular, Square, and Elliptical Orifices Directed Perpendicularly to an Air Stream

Description: An experimental investigation was conducted to determine the penetration of air jets d.irected perpendicularlY to an air stream. Jets Issuing from circular, square, and. elliptical orifices were investigated. and. the jet penetration at a position downstream of the orifice was determined- as a function of jet density, jet velocity, air-stream d.enaity, air-stream velocity, effective jet diameter, and. orifice flow coeffIcient. The jet penetrations were determined for nearly constant values of air-stream density at three tunnel-air velocities arid for a large range of Jet velocities and. densities. The results were correlated in terms of dimensionless parameters and the penetrations of the various shapes were compared. Greater penetration was obtained. with the square orifices and the elliptical orifices having an axis ratio of 4:1 at low tunnel-air velocities and low jet pressures than for the other orifices investigated. The square orifices gave the best penetrations at the higher values of tunnel-air velocity and jet total pressure.
Date: February 1, 1950
Creator: Ruggeri, Robert S.; Callaghan, Edmund E. & Bowden, Dean T.

Photomicrographic Investigation of Spontaneous Freezing Temperatures of Supercooled Water Droplets

Description: A photomicrographic technique for investigating eupercooled. water droplets has been devised and. used. to determine the spontaneous freezing temperatures of eupercooled. water droplets of the size ordinarily found. in the atmosphere. The freezing temperatures of 4527 droplets ranging from 8.75 to 1000 microns in diameter supported on a platinum surface and 571 droplets supported on copper were obtained. The average spontaneous freezing temperature decreased with decrease in the size of the droplets. The effect of size on the spontaneous freezing temperature was particularly marked below 60 microns. Frequency-distribution curves of the spontaneous freezing temperatures observed for droplets of a given size were obtained. Although no droplet froze at a temperature above 20 0 F, all droplets melted at 32 F. Results obtained with a copper support did not differ essentially from those obtained with a platinum surface.
Date: July 1, 1950
Creator: Dorsch, R. G. & Hacker, P. T.

An Instrument Employing a Coronal Discharge for the Determination of Droplet-Size Distribution in Clouds

Description: A flight instrument that uses electric means for measuring the droplet-size distribution in above-freezing clouds has been devised and given preliminary evaluation in flight. An electric charge is placed on the droplets and they are separated aerodynamically according to their mass. Because the charge placed on the droplets is a. function of the droplet size, the size spectrum can 'be determined by measurement of the charge deposited on cylinders of several different sizes placed to intercept the charged droplets. An expression for the rate of charge acquisition by a water droplet in a field of coronal discharge is derived. The results obtained in flight with an instrument based on the method described indicate that continuous records of droplet-size spectrum variations in clouds can be obtained. The experimental instrument was used to evaluate the method and was not refined to the extent necessary for obtaining conclusive meteorological data. The desirable features of an instrument based on the method described are (i) The instrument can be used in clouds with temperatures above freezing; (2) the size and the shape of the cylinders do not change during the exposure time; (3) the readings are instantaneous and continuous; (4) the available sensitivity permits the study of variations in cloud structures of less than 200 feet in extent.
Date: September 1, 1951
Creator: Brun, Rinaldo J.; Levine, Joseph & Kleinknecht, Kenneth S.