UNT Libraries Government Documents Department - 319,268 Matching Results

Search Results

Quench observation using quench antennas on RHIC IR quadrupole magnets
Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals.
Solar two: A molten salt power tower demonstration
A consortium of United States utility concerns led by the Southern California Edison Company (SCE) is conducting a cooperative project with the US Department of Energy (DOE), Sandia National Laboratories, and industry to convert the 10-MW Solar One Power Tower Pilot Plant to molten nitrate salt technology. The conversion involves installation of a new receiver, a new thermal storage system, and a new steam generator; it utilizes Solar One`s heliostat field and turbine generator. Successful operation of the converted plant, called Solar Two, will reduce economic risks in building initial commercial power tow projects and accelerate the commercial acceptance of this promising renewable energy technology. The estimated cost of Solar Two, including its three-year test period, is $48.5 million. The plant will begin operation in early 1996.
Medical imaging with coded apertures
Now algorithms were investigated for image reconstruction in emission tomography which could incorporate complex instrumental effects such as might be obtained with a coded aperture system. The investigation focused on possible uses of the wavelet transform to handle non-stationary instrumental effects and analytic continuation of the Radon transform to handle self-absorption. Neither investigation was completed during the funding period and whether such algorithms will be useful remains an open question.
Tuning shims for high field quality in superconducting magnets
A high field quality in interaction region quadrupoles is crucial to the luminosity performance of high energy colliders such as the Relativistic Heavy Ion Collider (RHIC). The field quality in magnets is limited in part by manufacturing tolerances in the parts and assembly. A tuning shim method has been developed to reduce the relative field errors ({Delta}B/B) from {approximately}10{sup {minus}4} to {approximately}10{sup {minus}5} at 2/3 of the coil radius. Eight tuning shims having a variable thickness of iron are inserted after the construction and measurement of field harmonics in the magnet. In this paper the tuning shim technique is described for RHIC interaction region quadrupoles. The results of calculations and measurement are also presented.
Ultra-intense, short pulse laser-plasma interactions with applications to the fast ignitor
Due to the advent of chirped pulse amplification (CPA) as an efficient means of creating ultra-high intensity laser light (I > 5{times}10{sup 17} W/cm{sup 2}) in pulses less than a few picoseconds, new ideas for achieving ignition and gain in DT targets with less than 1 megajoule of input energy are currently being pursued. Two types of powerful lasers are employed in this scheme: (1) channeling beams and (2) ignition beams. The current state of laser-plasma interactions relating to this fusion scheme will be discussed. In particular, plasma physics issues in the ultra-intense regime are crucial to the success of this scheme. We compare simulation and experimental results in this highly nonlinear regime.
The magnet system of the Relativistic Heavy Ion Collider (RHIC)
The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original "Big Bang." The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.
Properties of a new average power Nd-doped phosphate laser glass
The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime.
Plasma gate switch experiment on Pegasus II
The plasma gate switch is a novel technique for producing a long conduction time vacuum opening switch. The switch consists of an aluminum foil which connects the cathode to the anode in a coaxial geometry. The foil is designed so that the maximum axial acceleration is in the center of the foil and that at the appropriate time, the center opens up and magnetic flux is carried down the gun to the load region. The switch is designed to minimize the amount of mass transported into the load region. We have completed the first experimental test of this design and present results from the test. These results indicate there were some asymmetry problems in the construction of the switch but that otherwise the switch performed as expected.
Single Bunch Stability to Monopole Excitation
We study single bunch stability with respect to monopole longitudinal oscillations in electron storage rings. Our analysis is different from the standard approach based on the linearized Vlasov equation. Rather, we reduce the full nonlinear Fokker-Planck equation to a Schroedinger-like equation which is subsequently analyzed by perturbation theory. We show that the Haissinski solution [3] may become unstable with respect to monopole oscillations and derive a stability criterion in terms of the ring impedance. We then discuss this criterion and apply it to a broad band resonator impedance model.
Neutron diffraction study of NiTi during compressive deformation and after shape-memory recovery
Neutron diffraction measurements of internal elastic strains and texture were performed during compressive deformation of martensitic NiTi deforming by twinning. Rietveld refinement of the diffraction spectrum was performed in order to obtain lattice parameter variations and preferred orientation of martensitic variants. The elastic internal strains, are proportional to the externally applied stress but strongly dependent on crystallographic orientation. Plastic deformation by matrix twinning is consistent with type I (1-1-1) twinning, whereby (100) and (011) planes tend to align perpendicular and parallel to the stress axis, respectively. The preferred orientation ratio r according to the model by March and Dollase is proportional to the macroscopic plastic strain for (100) and (011) planes for loading, unloading and shape-memory recovery. To the best of our knowledge, this is the first in situ bulk measurement of reversible twinning in NiTi. Finally, shape-memory recovery results in a marked change of NiTi cell parameters.
Deep x-ray lithography for micromechanics
Extensions of the German LIGA process have brought about fabrication capability suitable for cost effective production of precision engineered components. The process attributes allow fabrication of mechanical components which are not capable of being made via conventional subtractive machining methods. Two process improvements have been responsible for this extended capability which involve the areas of thick photoresist application and planarization via precision lapping. Application of low-stress x-ray photoresist has been achieved using room temperature solvent bonding of a preformed photoresist sheet. Precision diamond lapping and polishing has provided a flexible process for the planarization of a wide variety of electroplated metals in the presence of photoresist. Exposure results from the 2.5 GeV National Synchrotron Light Source storage ring at Brookhaven National Laboratory have shown that structural heights of several millimeter and above are possible. The process capabilities are also well suited for microactuator fabrication. Linear and rotational magnetic microactuators have been constructed which use coil winding technology with LIGA fabricated coil forms. Actuator output forces of 1 milliNewton have been obtained with power dissipation on the order of milliWatts. A rotational microdynamometer system which is capable of measuring torque-speed data is also discussed.
Maintenance Action Work Plan for Waste Area Grouping 1 inactive tanks 3001-B, 3004-B, T-30, and 3013 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program
This Maintenance Action Work Plan has been prepared to document the activities and procedures for the remediation of four inactive, low-level radioactive tanks at Waste Area Grouping 1, from the Category D list of tanks in the Federal Facility Agreement for the Oak Ridge Reservation (EPA et al. 1994). The four tanks to remediated are tanks 3001-B, 3004-B, T-30, and 3013. Three of the tanks (3001-B, 3004-B, and T-30) will be physically removed from the ground. Because of logistical issues associted with excavation and site access, the fourth tank (3013) will be grouted in place and permanently closed.
The LCLS X-Ray FEL at SLAC
The design status and R and D plan of a 1.5 Angstrom SASE-FEL at SLAC, called the Linac Coherent Light Source (LCLS), are described. The LCLS utilizes one third of the SLAC linac for the acceleration of electrons to about 15 GeV. The FEL radiation is produced in a long undulator and is directed to an experimental area for its utilization. The LCLS is designed to produce 300 fsec long radiation pulses at the wavelength of 1.5 Angstrom with 9 GW peak power. This radiation has much higher brightness and coherence, as well as shorter pulses, than present 3rd generation sources. It is shown that such leap in performance is now within reach, and is made possible by the advances in the physics and technology of photo-injectors, linear accelerators, insertion devices and free-electron lasers.
Material and processing issues for the monolithic integration of microelectronics with surface-micromachined polysilicon sensors and actuators
The monolithic integration of micromechanical devices with their controlling electronics offers potential increases in performance as well as decreases in cost for these devices. Analog Devices has demonstrated the commercial viability of this integration by interleaving the micromechanical fabrication steps of an accelerometer with the microelectronic fabrication steps of its controlling electronics. Sandia`s Microelectronics Development Laboratory has integrated the micromechanical and microelectronic processing sequences in a segregated fashion. In this CMOS-first, micromechanics-last approach, conventional aluminum metallization is replaced by tungsten metallization to allow CMOS to withstand subsequent high-temperature processing during the micromechanical fabrication. This approach is a further development of an approach originally developed at UC Berkeley. Specifically, the issues of yield, repeatability, and uniformity of the tungsten/CMOS approach are addressed. Also, material issues related to the development of high-temperature diffusion barriers, adhesion layers, and low-stress films are discussed. Processing and material issues associated with alternative approaches to this integration such as micromechanics- first, CMOS-last or the interleaved process are also discussed.
Using the CAVE virtual-reality environment as an aid to 3-D electromagnetic field computation
One of the major problems in three-dimensional (3-D) field computation is visualizing the resulting 3-D field distributions. A virtual-reality environment, such as the CAVE, (CAVE Automatic Virtual Environment) is helping to overcome this problem, thus making the results of computation more usable for designers and users of magnets and other electromagnetic devices. As a demonstration of the capabilities of the CAVE, the elliptical multipole wiggler (EMW), an insertion device being designed for the Advanced Photon Source (APS) now being commissioned at Argonne National Laboratory (ANL), wa made visible, along with its fields and beam orbits. Other uses of the CAVE in preprocessing and postprocessing computation for electromagnetic applications are also discussed.
Superlattice Photocathodes for Accelerator-Based Polarized Electron Source Applications
A major improvement in the performance of the SLC was achieved with the introduction of thin strained-layer semiconductor crystals. After some optimization, polarizations of 75-85% became standard with lifetimes that were equal to or better than that of thick unstrained crystals. Other accelerators of polarized electrons, generally operating with a much higher duty factor, have now successfully utilized similar photocathodes. For future colliders, the principal remaining problem is the limit on the total charge that can be extracted in a time scale of 10 to 100 ns. In addition, higher polarization is critical for exploring new physics, especially supersymmetry. However, it appears that strained-layer crystals have reached the limit of their optimization. Today strained superlattice crystals are the most promising candidates for better performance. The individual layers of the superlattice can be designed to be below the critical thickness for strain relaxation, thus in principle improving the polarization. Thin layers also promote high electron conduction to the surface. In addition the potential barriers at the surface for both emission of conduction-band electrons to vacuum and for tunneling of valence-band holes to the surface can be significantly less than for single strained-layer crystals, thus enhancing both the yield at any intensity and also decreasing the limitations on the total charge. The inviting properties of the recently developed AlInGaAs/GaAs strained superlattice with minimal barriers in the conduction band are discussed in detail.
Results of design calculations. Specification of a prototype zone plate for focusing hard x-rays
A zone plate capable of focusing hard x-rays to less than 1 {mu}m spot size is designed and specified. This design is based on the state-of-art fabrication technology available today. This zone plate consists of Cu/Al layers sputtered alternatively on a round stainless steel core. Parameters of this zone plate are given. The focal length f is given for 8Kev x-rays and the thickness is optimized for focusing efficiency of the same x-ray energy.
Solid Waste Assurance Program Implementation Plan
On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixed waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.
Preliminary design and estimate of capital and operating costs for a production scale application of laser decontamination technology
The application of laser ablation technology to the decontamination of radioactive metals, particularly the surfaces of equipment, is discussed. Included is information related to the design, capital and operating costs, and effectiveness of laser ablation technology, based on commercial excimer and Nd:YAG lasers, for the decontamination of production scale equipment.
Functional design criteria for the self-installing liquid observation well
This document presents the functional design criteria for installing liquid observation wells (LOWs) into single-shell tanks containing ferrocyanide wastes. The LOWs will be designed to accommodate the deployment of gamma, neutron, and electromagnetic induction probes and to interface with the existing tank structure and environment.
Multidimensional DDT modeling of energetic materials
To model the shock-induced behavior of porous or damaged energetic materials, a nonequilibrium mixture theory has been developed and incorporated into the shock physics code, CTH. The foundation for this multiphase model is based on a continuum mixture formulation given by Baer and Nunziato. This multiphase mixture model provides a thermodynamic and mathematically-consistent description of the self-accelerated combustion processes associated with deflagration-to-detonation and delayed detonation behavior which are key modeling issues in safety assessment of energetic systems. An operator-splitting method is used in the implementation of this model, whereby phase diffusion effects are incorporated using a high resolution transport method. Internal state variables, forming the basis for phase interaction quantities, are resolved during the Lagrangian step requiring the use of a stiff matrix-free solver. Benchmark calculations are presented which simulate low-velocity piston impact on a propellant porous bed and experimentally-measured wave features are well replicated with this model. This mixture model introduces micromechanical models for the initiation and growth of reactive multicomponent flow that are key features to describe shock initiation and self-accelerated deflagration-to-detonation combustion behavior. To complement one-dimensional simulation, two-dimensional numerical calculations are presented which indicate wave curvature effects due to the loss of wall confinement. This study is pertinent for safety analysis of weapon systems.
Multidimensional DDT modeling of energetic materials
A nonequilibrium continuum mixture model has been incorporated into the CTH shock physics code to describe deflagration-to-detonation transition in granular energetic materials. This approach treats multiple thermodynamic and mechanics fields including the effects of relative material motion, rate-dependent compaction and interphase exchange of mass, momentum and energy. A finite volume description is formulated and internal state variables are solved using an operator-splitting method. Numerical simulations of low-velocity impact on a weakly-confined porous propellant bed are presented which display lateral wall release leading to curved compaction and reaction wave behavior.
Technical evaluation report for the demonstration of radio frequency soil decontamination at Site S-1
The Air Force`s Armstrong Laboratory at Tyndall Air Force Base, Florida, has supported the research and development of Radio Frequency Soil Decontamination. Radio frequency soil decontamination is essentially a heat-assisted soil vapor extraction process. Site S-1 at Kelly Air Force Base, San Antonio, Texas, was selected for the demonstration of two patented techniques. The site is a former sump that collected spills and surface run-off from a waste petroleum, oils, and lubricants and solvent storage and transfer area. In 1993, a technique developed by the IIT Research Institute using an array of electrodes placed in the soil was demonstrated. In 1994, a technique developed by KAI Technologies, Inc. using a single applicator placed in a vertical borehole was demonstrated. Approximately 120 tons of soil were heated during each demonstration to a temperature of about 150 degrees Celsius.
Geomorphology of plutonium in the Northern Rio Grande
Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.
Light U(1) gauge boson coupled to baryon number
The authors discuss the phenomenology of a light U(1) gauge boson, {gamma}{sub B}, that couples only to baryon number. Gauging baryon number at high energies can prevent dangerous baryon-number violating operators that may be generated by Planck scale physics. However, they assume at low energies that the new U(1) gauge symmetry is spontaneously broken and that the {gamma}{sub B} mass m{sub B} is smaller than m{sub z}. They show for m{sub {Upsilon}} < m{sub B} < m{sub z} that the {gamma}B coupling {alpha}{sub B} can be as large as {approximately} 0.1 without conflicting with the current experimental constraints. The authors argue that {alpha}{sub B} {approximately} 0.1 is large enough to produce visible collider signatures and that evidence for the {gamma}{sub B} could be hidden in existing LEP data. They show that there are realistic models in which mixing between the {gamma}{sub B} and the electroweak gauge bosons occurs only as a radiative effect and does not lead to conflict with precision electroweak measurements. Such mixing may nevertheless provide a leptonic signal for models of this type at an upgraded Tevatron.
Nonlinear Waves in Reaction Diffusion Systems: The Effect of Transport Memory
Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wavefronts in reaction diffusion systems. We obtain new results such as the possibility of spatial oscillations in the wavefront shape for certain values of the system parameters and high enough wavefront speeds. We also generalize earlier known results concerning the minimum wavefront speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piece-wise linear representation of the nonlinearity.
Characterization of the LiSi/CsBr-LiBr-KBr/FeS(2) System for Potential Use as a Geothermal Borehole Power Source
We are continuing to study the suitability of modified thermal-battery technology as a potential power source for geothermal borehole applications. Previous work focused on the LiSi/FeS{sub 2} couple over a temperature range of 350 C to 400 C with the LiBr-KBr-LiF eutectic, which melts at 324.5 C. In this work, the discharge processes that take place in LiSi/CsBr-LiBr-KBr eutectic/FeS{sub 2} thermal cells were studied at temperatures between 250 C and 400 C using pelletized cells with immobilized electrolyte. The CsBr-LiBr-KBr eutectic was selected because of its lower melting point (228.5 C). Incorporation of a quasi-reference electrode allowed the determination of the relative contribution of each electrode to the overall cell polarization. The results of single-cell tests and limited battery tests are presented, along with preliminary data for battery stacks tested in a simulated geothermal borehole environment.
Interaction of Slow Electrons With High-Pressure Gases (`Quasi-Liquids`); Synthesis of Our Knowledge on Slow Electron-Molecule Interactions; Final Progress Report, March 15, 1986--August 14, 1987
The rate constant for electron attachment to F{sub 2} was measured at 233 to 373 K in nitrogen at 0.04--0.75 eV and in argon at 298 K at 0.4--2.95 eV. The unfolded cross section was compared with calculations. The ionization threshold of N,N,N{prime},N{prime}-tetramethyl-p-phenylenediamine (TMPD) was measured in ethane over the density range 0.15--13.3 M/l at 295--413 K using multiphoton ionization conductivity.
Direct Measurement of A{sub c} using Inclusive Charm Tagging at the SLD Detector
We report a new measurement of A{sub c} using data obtained by SLD in 1993-98. This measurement uses a vertex tag technique, where the selection of a c hemisphere is based on the reconstructed mass of the charm hadron decay vertex. The method uses the 3D vertexing capabilities of SLD's CCD vertex detector and the small and stable SLC beams to obtain a high c-event tagging efficiency and purity of 28% and 82%, respectively. Charged kaons identified by the CRID detector and the charge of the reconstructed vertex provide an efficient quark-antiquark tag, with the analyzing power calibrated from the data. We obtain a preliminary result of A{sub c} = 0.603 {+-} 0.028 {+-} 0.023.
Minimum Field Strength in Ultrafast Magnetization Reversal
Ultrafast magnetic field pulses as short as 2 ps are able to reverse the magnetization in thin in-plane magnetized cobalt films. The field pulses are applied in the plane of the film and their direction encompasses all angles with the magnetization. At right angle to the magnetization maximum torque is exerted on the spins. In this geometry a precessional magnetization reversal can be triggered by fields as small as 184 kA/m. Applications in future ultrafast magnetic recording schemes can be foreseen.
Challenges in the Twentieth Century and Beyond: Computer codes and data
The second half of the twentieth century has seen major changes in computer architecture. In the early fifties to the early seventies, the word ``computes`` demanded reverence, respect and even fear. Computers, then, were almost ``untouchable``. Today, computers have become the mainstreams of communication on the rapidly expanding communication highways. They have become necessities of life. With the computers came the establishment of information centers -- tasked with the dissemination of newly developed computer codes and generated data. The Radiation Shielding Information Center (RSIC) was founded in 1962 as a valuable resource for programs and cross section data concerned with the effects of radiation. Through the years, RSIC has collected computer codes developed for the early machines (IBM 360, DEC PDP-10, CDC 660, UNIVAC 1100), to the more modern and powerful desktops (Pentium based Personal Computers, UNIX workstations like the IBM RISC 6000, DEC Alpha, SUN) and supercomputers (Cray XMP, Cray YMP, Cray C90, IBM SP2).
Stratigraphic variations and secondary porosity within the Maynardville Limestone in Bear Creek Valley, Y-12 Plant, Oak Ridge, Tennessee
To evaluate groundwater and surface water contamination and migration near the Oak Ridge Y-12 plant, a Comprehensive Groundwater Monitoring Plan was developed. As part of the Maynardville exit pathways monitoring program, monitoring well clusters were ii installed perpendicular to the strike of the Maynardville Limestone, that underlies the southern part of the Y-12 Plant and Bear Creek Valley (BCV). The Maynardville Project is designed to locate potential exit pathways of groundwater, study geochemical characteristics and factors affecting the occurrence and distribution of water-bearing intervals, and provide hydrogeologic information to be used to reduce the potential impacts of contaminants entering the Maynardville Limestone.
Network improvement problems
The authors study budget constrained optimal network improvement problems. Such problems aim at finding optimal strategies for improving a network under some cost measure subject to certain budget constraints. As an example, consider the following prototypical problem: Let G = (V, E) be an undirected graph with two cost values L(e) and C(e) associated with each edge e, where L(e) denotes the length of e and C(e) denotes the cost of reducing the length of e by a unit amount. A reduction strategy specifies for each edge e, the amount by which L(e) is to be reduced. For a given budget B, the goal is to find a reduction strategy such that the total cost of reduction is at most B and the minimum cost tree (with respect to some measure M) under the modified L costs is the best over all possible reduction strategies which obey the budget constraint. Typical measures M for a tree are the total weight and the diameter. They provide both hardness and approximation results for the two measures M mentioned above. For the problem of minimizing the total weight of a spacing tree, they provide an algorithm that, for any fixed {gamma},{var_epsilon} > 0, finds a solution whose weight is at most (1 + 1/{gamma}) times that of a minimum length spanning tree plus an additive constant of at most {var_epsilon} and the total cost of improvement is at most (1 + {gamma}) times the budget B. This result can be extended to obtain approximation algorithms for more general network design problems considered in [GW, GG+94].
Chemical decomposition of high-level nuclear waste storage/disposal glasses under irradiation. 1997 annual progress report
'The objective of this research is to use the sensitive technique of electron spin resonance (ESR) to look for evidence of radiation-induced chemical decomposition of vitreous forms contemplated for immobilization of plutonium and/or high-level nuclear wastes, to interpret this evidence in terms of existing knowledge of glass structure, and to recommend certain materials for further study by other techniques, particularly electron microscopy and measurements of gas evolution by high-vacuum mass spectroscopy. Previous ESR studies had demonstrated that an effect of y rays on a simple binary potassium silicate glass was to induce superoxide (O{sub 2}{sup -}) and ozonide (O{sub 3}{sup -}) as relatively stable product of long-term irradiation Accordingly, some of the first experiments performed as a part of the present effort involved repeating this work. A glass of composition 44 K{sub 2}O: 56 SiO{sub 2} was prepared from reagent grade K{sub 2}CO3 and SiO{sub 2} powders melted in a Pt crucible in air at 1,200 C for 1.5 hr. A sample irradiated to a dose of 1 MGy (1 MGy = 10{sup 8} rad) indeed yielded the same ESR results as before. To test the notion that the complex oxygen ions detected may be harbingers of radiation-induced phase separation or bubble formation, a small-angle neutron scattering (SANS) experiment was performed. SANS is theoretically capable of detecting voids or bubbles as small as 10 \305 in diameter. A preliminary experiment was carried out with the collaboration of Dr. John Barker (NIST). The SANS spectra for the irradiated and unirradiated samples were indistiguishable. A relatively high incoherent background (probably due to the presence of protons) may obscure scattering from small gas bubbles and therefore decrease the effective resolution of this technique. No further SANS experiments are planned at this time.'
National low-level waste management program radionuclide report series, Volume 14: Americium-241
This report, Volume 14 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of americium-241 ({sup 241}Am). This report also includes discussions about waste types and forms in which {sup 241}Am can be found and {sup 241}Am behavior in the environment and in the human body.
Using artificial neural networks to predict the performance of a liquid metal reflux solar receiver: Preliminary results
Three and four-layer backpropagation artificial neural networks have been used to predict the power output of a liquid metal reflux solar receiver. The networks were trained using on-sun test data recorded at Sandia National Laboratories in Albuquerque, New Mexico. The preliminary results presented in this paper are a comparison of how different size networks train on this particular data. The results give encouragement that it will be possible to predict output power of a liquid metal receiver under a variety of operating conditions using artificial neural networks.
Integral Fast Reactor Program annual progress report, FY 1994
This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1994. Technical accomplishments are presented in the following areas of the IFR technology development activities: metal fuel performance; pyroprocess development; safety experiments and analyses; core design development; fuel cycle demonstration; and LMR technology R&D.
Conceptual design of the National Ignition Facility
DOE commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KDO), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 {mu}m) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program`s site, and issued a 7,000-page, 27-volume CDR in May 1994.2 Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a Key Decision One (KD1) for the NIF, which approved the Project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. The Project will cost approximately $1.1 billion and will be completed at the end of FY …
Design and construction of deinococcus radiodurans for biodegradation of organic toxins at radioactive DOE waste sites. 1998 annual progress report
'A 1992 survey of DOE waste sites indicates that about 32% of soils and 45% of groundwaters at these sites contain radionuclides and metals plus an organic toxin class. The most commonly reported combinations of these hazardous compounds being radionuclides and metals (e.g., U, Pu, Cs, Pb, Cr, As) plus chlorinated hydrocarbons (e.g., trichloroethylene), fuel hydrocarbons (e.g., toluene), or polychlorinated biphenyls (e.g., Arochlor 1248). These wastes are some of the most hazardous pollutants and pose an increasing risk to human health as they leach into the environment. The objective of this research is to develop novel organisms, that are highly resistant to radiation and the toxic effects of metals and radionuclides, for in-situ bioremediation of organic toxins. Few organisms exist that are able to remediate such environmental organic pollutants, and among those that can, the bacteria belonging to the genus Pseudomonas are the most characterized. Unfortunately, these bacteria are very radiation sensitive. For example, Pseudomonas spp. is even more sensitive than Escherichia coli and, thus, is not suitable as a bioremediation host in environments subjected to radiation. By contrast, D. radiodurans, a natural soil bacterium, is the most radiation resistant organism yet discovered; it is several thousand times more resistant to ionizing radiation than Pseudomonas. The sophisticated gene transfer and expression systems the authors have developed for D. radiodurans over the last eight years make this organism an ideal candidate for high-level expression of genes that degrade organic toxins, in radioactive environments. The authors ultimate aim is to develop organisms and approaches that will be useful for remediating the large variety of toxic organic compounds found in DOE waste sites that are too radioactive to support other bioremediation organisms. This report summarizes work after the first 6 months of a 3-year project.'
CP Violation in B Decays at the Tevatron
Between 1992 to 1996, the CDF and D0 detectors each collected data samples exceeding 100 pb{sup {minus}1} of p{bar p} collisions at {radical}s = 1.8 TeV at the Fermilab Tevatron. These data sets led to a large number of precision measurements of the properties of B hadrons including lifetimes, masses, neutral B meson flavor oscillations, and relative branching fractions, and to the discovery of the B{sub 0} meson. Perhaps the most exciting result was the first look at the CP violation parameter sin ({vert_bar}2{beta}){vert_bar} using the world's largest sample of fully reconstructed B{sup 0}/{bar B}{sup 0} {r_arrow} J/{psi}K{sub s}{sup 0} decays. A summary of this result is presented here. In the year 2000, the Tevatron will recommence p{bar p} collisions with an over order of magnitude expected increased in integrated luminosity (1 fb{sup {minus}1} per year). The CDF and D0 detectors will have undergone substantial upgrades, particularly in the tracking detectors and the triggers. With these enhancements, the Tevatron B physics program includes precision measurements of sin(2{beta}) and B{sub s}{sup 0} flavor oscillations, as well as studies of rare B decays that are sensitive to new physics. The studies of B{sub s}{sup 0} mesons will be particularly interesting as this physics will be unique to the Tevatron during the first half of the next decade.
Diphoton production in p{bar p} collisions at {radical}s = 1.8 TeV
We present measurements of the inclusive {gamma}{gamma} cross section (as a function of invariant mass and photon {epsilon}{sub {tau}}), in p{bar p} collisions at {radical}s = 1.8 TeV, made using the D0 detector at the Fermilab Tevatron collider. The next is leading order (NLO) QCD prediction is found to be in good agreement with the data. The effects of invariant mass and diphoton balance cuts, which test the next-to-leading order contributions to the cross section, are investigated. We also compare the distribution of {kappa}{sub {tau}} between samples of diphotons and highly electromagnetic jets, and find that the NLO QCD prediction models the shape of the {gamma}{gamma} {kappa}{sub {tau}} distribution quite well.
Simultaneous SO{sub 2}/NO{sub x} abatement using zeolite-supported copper. Progress report, October 1, 1993--September 30, 1994
The goals of this project have evolved from an investigation of ways of preparing Li and Hall`s Cu-ZSM-5 catalyst using new methods to yield a more robust catalyst, into an investigation of modified Cu-ZSM-5 catalysts for the simultaneous reduction of NO and oxidation of SO{sub 2}. This was not a conscious effort or decision on the part of the investigators, but resulted from a natural evolution of the project. The authors have developed a zeolite synthesis and characterization capability in the group and have prepared impregnated test materials for the investigation of different catalyst precursors. They have prepared different vanadium-impregnated aluminas, for evaluation of the impregnation method, and have succeeded in reproducing the results of Li and Hall`s Cu-ZSM-5 catalyst. This report reviews the progress during the first three quarters of the year, and includes progress from the last quarter. Results are discussed for the Raman spectroscopy of precursors; infrared spectroscopy of vanadium-impregnated alumina; zeolite overlayer on cordierite; reactivity of Cu-ZSM-5; and impregnation of vanadyl acetylacetonate on alumina.
Radiation dose modeling using IGRIP and Deneb/ERGO
The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb`s ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood.
Automatic history matching of geothermal field performance
We have developed inverse modeling capabilities for the multiphase multicomponent numerical simulator TOUGH2 to facilitate automatic history matching, and parameter estimation based on data obtained during exploitation of Geothermal fields. The ITOUGH2 code allows one to estimate TOUGH2 input parameters based on any type of observation for which a corresponding TOUGH2 output can be calculated. Furthermore, a detailed residual and error analysis is performed, and the uncertainty of model predictions can be evaluated. This paper focuses on the solution of the inverse; problem, i.e. the determination of model-related parameters by automatically calibrating a conceptual model of the Geothermal system against data obtained during field operation. We first describe the modeling, approach used to simulate fluid and heat flow in fractured-porous media. The inverse problem is then formulated, followed by a brief discussion of the optimization algorithm. A sample problem is given to demonstrate the application of the method to Geothermal reservoir data.
Nuclear properties for astrophysical applications
We tabulate the ground-state odd-proton and odd-neutron spins, proton and neutron pairing gaps, binding energies, neuton separation energies, quantities related to {beta}-delayed one, two and three neutron emission probabilities, {beta}-decay Q values and half-lives with respect to Gamow-Teller decay, proton separation energies, and {alpha}-decay Q values and half-lives. The starting point of the calculations is a calculation of nuclear ground-states and (information based on the finite-range droplet model and the folded-Yukawa single-particle model published in a previous issue of ATOMIC DATA AND NUCLEAR DATA TABLES. The {beta}-delayed neutron-emission probabilities and Gamow-Teller {beta}-decay rates are obtained from a QRPA model that uses single-particle levels and wave-functions at the calculated nuclear ground-state shape as the starting point.
Efficient separations and processing crosscutting program: Develop and test sorbents
This report summarizes work performed during FY 1995 under the task {open_quotes}Develop and Test Sorbents,{close_quotes} the purpose of which is to develop high-capacity, selective solid extractants to recover cesium, strontium, and technetium from nuclear wastes. This work is being done for the Efficient Separations and Processing Crosscutting Program (ESP), operated by the U.S. Department of Energy`s Office of Environmental Management`s Office of Technology Development. The task is under the direction of staff at Pacific Northwest Laboratory (PNL) with key participation from industrial and university staff at 3M, St. Paul, Minnesota; IBC Advanced Technologies, Inc., American Forks, Utah; AlliedSignal, Inc., Des Plaines, Illinois, and Texas A&M University, College Station, Texas. 3M and IBC are responsible for ligand and membrane technology development; AlliedSignal and Texas A&M are developing sodium titanate powders; and PNL is testing the materials developed by the industry/university team members. Major accomplishments for FY 1995 are summarized in this report.
Integrated models for plasma/material interaction during loss of plasma confinement.
A comprehensive computer package, High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS), has been developed to evaluate the damage incurred on plasma-facing materials during loss of plasma confinement. The HEIGHTS package consists of several integrated computer models that follow the start of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the energy deposited. The package includes new models to study turbulent plasma behavior in the SOL and predicts the plasma parameters and conditions at the divertor plate. Full two-dimensional comprehensive radiation magnetohydrodynamic models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. A brief description of the HEIGHTS package and its capabilities are given in this work with emphasis on turbulent plasma behavior in the SOL during disruptions.
Using trees to remediate groundwaters contaminated with chlorinated hydrocarbons. 1998 annual progress report
'Industrial practices in the past have resulted in contamination of groundwater with chlorinated hydrocarbons (CHCs) at many DOE sites, such as Hanford and Savannah River. Such contamination is a major problem because existing groundwater remediation technologies are expensive and difficult. An inexpensive method for groundwater remediation is greatly needed. Trees could be used to remediate CHC polluted groundwater at minimal cost (phytoremediation). Before phytoremediation can be extensively applied, the authors must determine the range of compounds that are attacked, the effects of metabolic products on the plants and the environment, and the effect of transpiration and concentration of CHC on uptake and metabolism. They will test the ability of hybrid poplar to take up and transform the chlorinated methanes, ethanes and ethylenes. The rate of uptake and transformation by poplar of TCE as a function of concentration in the soil, transpiration rate and illumination level will be determined. Methods will be developed to permit rapid testing of plants from contaminated sites for species able to oxidize and sequester chlorinated compounds. They will identify the nature of the bound residues of TCE metabolism in poplar. They will identify the mechanisms involved in CHC oxidation in poplar and use genetic manipulations to enhance that activity. They will introduce the genes for mammalian cytochrome P-450-IIE1, known to oxidize light CHCs such as TCE to attempt to increase the CHC metabolism capacity of poplar. The results of this research will place phytoremediation of CHCs on a firm scientific footing, allowing a rational assessment of its application to groundwater contamination. This report summarizes the results of the first 1.5 years of work on a three-year project.'
Probing coal reactivity by time-resolved small angle x-ray scattering.
The objective of this study is to observe changes in coal structure in situ with small angle X-ray scattering (SAXS) during solvent swelling and during pyrolysis. We have built a SAXS instrument at the Basic Energy Sciences Synchrotrons Research Center at the Advanced Photon Source that allows us to obtain scattering patterns in the millisecond time domain. The eight Argonne Premium Coal samples were used in this study. The information that can be derived from these experiments, such as changes in fractal dimensionality and in size and type of porosity, was found to be very rank-dependent. In the swelling experiments, it was noted that for certain coals, structural changes occurred in just a few minutes.
Detection of Depleted Uranium in Soil Using Portable Hand-Held Instruments
The Measurement Applications and Development Group at the Oak Ridge National Laboratory (ORNL) has collected and analyzed data with the purpose of evaluating the in-situ detection capabilities of common hand-held detectors for depleted uranium ({sup 238}U) in soil. Measurements were collected with one each of the following detectors: a FIDLER operated in a gross (full spectrum) mode, a FIDLER operated in a spectrum specific (windowed) mode, a 1.25'' x 1.5'' cylindrical NaI detector operated with a gross count rate system, and both open and closed-window pancake-type detectors. Representative samples were then collected at the same location and later analyzed at an ORNL laboratory. This report presents a correlation between the measurements and the soil concentration results and should be helpful to anyone interested in estimating measurement sensitivities for depleted uranium in soil.
Back to Top of Screen