UNT Libraries Government Documents Department - 428,187 Matching Results

Search Results

2009 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

Description: For reporting year 2009, Los Alamos National Laboratory (LANL) submitted a Form R report for lead as required under the Emergency Planning and Community Right-to- Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2009 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2009, as well as to provide background information about data included on the Form R reports.
Date: November 1, 2010
Creator: (ENV-ES), Environmental Stewardship Group

Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.

Description: This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.
Date: February 1, 1991
Creator: (U.S.), Pacific Northwest and Alaska Bioenergy Program

Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

Description: We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum p{sub T} > 0.5 GeV/c, pseudorapidity |{eta}| < 1) produced in association with large transverse momentum jets ({approx}2.2 fb{sup -1}) or with Drell-Yan lepton-pairs ({approx}2.7 fb{sup -1}) in the Z-boson mass region (70 < M(pair) < 110 GeV/c{sup 2}) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-p{sub T} jet production) in each event to define three regions of {eta}-{phi} space; toward, away, and transverse, where {phi} is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-p{sub T} jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.
Date: March 1, 2010
Creator: ,; Aaltonen, T.; Adelman, J.; Gonzalez, B.Alvarez; Amerio, S.; Amidei, D. et al.

Pyrolysis of surface-immobilized model compounds: Mechanistic implications for the thermal chemistry of coal

Description: Our research has been investigating the potential role that the cross-linked network structure of coal may play in perturbing free-radical reactions associated with coal thermolysis. This may be particularly important in the thermal conversion of coal at low temperatures, e.g., 350--400{degree}C, where bonds begin to break but most of the residual framework is retained. In order to assess the potential impact of restricted transport on thermal reaction pathways, we have modeled the phenomenon experimentally by studying organic model compounds that are covalently linked to an inert silica surface. The experimental methodology and significant results from studies of the thermolysis of surface-attached Ph(CH{sub 2}){sub n}Ph (n = 0--4) at 345--400{degree}C will be briefly surveyed. Initial results from studies of two-component surfaces will also be presented that reveal the role of radical migration, via facile hydrogen shuttling, in modifying the effects of diffusional constraints. 13 refs., 5 figs.
Date: January 1, 1990
Creator: ,; Britt, P F & Poutsma, M L

Empirical Study of Ne in H-Mode Pedestal in DIII-D

Description: There is compelling empirical [1] and theoretical [2] evidence that the global confinement of H-mode discharges increases as the pedestal pressure or temperature increases. Therefore, confidence in the performance of future machines requires an ability to predict the pedestal conditions in those machines. At this time, both the theoretical and empirical understanding of transport in the pedestal are incomplete and are inadequate to predict pedestal conditions in present or future machines. Recent empirical results might be evidence of a fundamental relation between the electron temperature T{sub e} and electron density n{sub e} profiles in the pedestal. A data set from the ASDEX-Upgrade tokamak has shown that {eta}{sub e}, the ratio between the scale lengths of the n{sub e} and T{sub e} profiles, exhibits a value of about 2 throughout the pedestal, despite a large range of the actual density and temperature values [3]. Data from the DIII-D tokamak show that over a wide range of pedestal density, the width of the steep gradient region for the T{sub e} profile is about 1-2 times the corresponding width for the n{sub e} profile, where both widths are measured from the plasma edge [4]. Thus, the barrier in the density might form a lower limit for the barrier in the electron temperature.
Date: May 5, 2005
Creator: . Groebner, R. J.; Osborne, T. H.; Fenstermacher, M. E.; Leonard, A. W.; Mahdavi, M. A.; Snyder, P. B. et al.

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

Description: Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed to each of the facilities participating in the PDP. The PDP evaluates analyses of simulated headspace gases, constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.
Date: April 1, 2009
Creator: /A, N

UPDATE: nuclear power program information and data, July-September 1981

Description: UPDATE is published by the Office of Coordination and Special Projects, Office of Nuclear Reactor Programs, to provide a quick reference source on the current status of nuclear powerplant construction and operation in the United States and for information on the fuel cycle, economics, and performance of nuclear generating units. Similar information on other means of electric generation as related to nuclear power is included when appropriate. The subject matter of the reports and analyses presented in UPDATE will vary from issue to issue, reflecting changes in foci of interest and new developments in the field of commercial nuclear power generation. UPDATA is intended to provide a timely source of current statistics, results of analyses, and programmatic information proceeding from the activities of the Office of Nuclear Reactor Programs and other components of the Department of Energy, as well as condensations of topical articles from other sources of interest to the nuclear community. It also facilitates quick responses to requests for data and information of the type often solicited from this office.
Date: January 1, 1981
Creator: /NBM--6011986, DOE

Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada, Revision 0. UPDATED WITH RECORD OF TECHNICAL CHANGE No.1

Description: This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (DOE/NV, 1996a). The Fuel Storage Area was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a).
Date: February 8, 1999
Creator: /NV, U.S. DOE

Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

Description: The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.
Date: February 1, 2007
Creator: /Navarro, DOE

The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site

Description: After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanford’s system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program.
Date: February 1, 2007
Creator: /Navarro/NSTec, DOE

Advanced, Low/Zero Emission Boiler Design and Operation

Description: In partnership with the U.S. Department of Energy's National Energy Technology Laboratory, B&W and Air Liquide are developing and optimizing the oxy-combustion process for retrofitting existing boilers as well as new plants. The main objectives of the project is to: (1) demonstrate the feasibility of the oxy-combustion technology with flue gas recycle in a 5-million Btu/hr coal-fired pilot boiler, (2) measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection and flue gas recycle strategies, and (3) perform technical and economic feasibility studies for application of the technology in demonstration and commercial scale boilers. This document summarizes the work performed during the period of performance of the project (Oct 2002 to June 2007). Detailed technical results are reported in corresponding topical reports that are attached as an appendix to this report. Task 1 (Site Preparation) has been completed in 2003. The experimental pilot-scale O{sub 2}/CO{sub 2} combustion tests of Task 2 (experimental test performance) has been completed in Q2 2004. Process simulation and cost assessment of Task 3 (Techno-Economic Study) has been completed in Q1 2005. The topical report on Task 3 has been finalized and submitted to DOE in Q3 2005. The calculations of Task 4 (Retrofit Recommendation and Preliminary Design of a New Generation Boiler) has been completed in 2004. In Task 6 (engineering study on retrofit applications), the engineering study on 25MW{sub e} unit has been completed in Q2, 2008 along with the corresponding cost assessment. In Task 7 (evaluation of new oxy-fuel power plants concepts), based on the design basis document prepared in 2005, the design and cost estimate of the Air Separation Units, the boiler islands and the CO{sub 2} compression and trains have been completed, for both super and ultra-supercritical case study. Final report of Task-7 is published ...
Date: June 30, 2007
Creator: /Wilcox, Babcock; Geological, Illinois State; Parsons, Worley & Group, Parsons Infrastructure /Technology

Electron Charged Graphite-based Hydrogen Storage Material

Description: The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.
Date: March 14, 2012
Creator: 0812, Dr. Chinbay Q. Fan R&D Manager Office of Technology and Innovations Phone: 847 768

Cost-Effective Silicon Wafers for Solar Cells

Description: Advanced Research Projects Agency-Energy project sheet summarizing general information about a new program for hydrogen fuel cell vehicles (project title "Direct Wafer Enabling Terawatt Photovoltaics") including critical needs, innovation and advantages, impacts, and contact information. This sheet is the first open solicitation, announcing funding opportunities for involvement in the project.
Date: May 11, 2012
Creator: 1366 Technologies, Inc.

Scaled Experimental Modeling of VHTR Plenum Flows

Description: Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.
Date: April 1, 2007
Creator: 15, ICONE