UNT Libraries Government Documents Department - 101 Matching Results

Search Results

A study of the {sup 16}O (e, e'p) reaction at deep missing energies

Description: The {sup 16}O(e,e'p)#8; reaction was studied in the #6;first physics experiment performed at Jefferson lab Hall A. In the quasielastic region cross sections were measured for both quasi#11;parallel and perpendicular kinematics at q = 1000 MeV and #2;{omega} = 445#14;#14;#15; MeV. From the data acquired in quasi#11;parallel kinematics#4; longitudinal and transverse response functions#4; R{sub L} and R{sub T} were separated for E{sub miss} < 60 MeV. The perpendicular kinematics data were used to extract R{sub LT}, #4; R{sub T},#4; and R{sub L#16;} + V{sub TT}/V{sub L}R{sub TT} response functions for the same E{sub miss} range and for P{sub miss} < 310 MeV#18;c. The {sub 16}O(#7;e,#4;e'p)#8; cross section was measured in the dip region at q = 1026 MeV and #2; {omega} = 586#12;#15;#19;#2; MeV for 10 MeV <#3; E{sub miss} < 320 MeV. This thesis presents the results for the missing energy continuum (#7;E{sub miss}>25#4; #3;#15; MeV)#8; from this experiment.
Date: February 1, 1999
Creator: Liyanage, Nilanga

Search for the Higgs Boson and Technicolor Particles in p anti-p Colisions at sqrt(s) = 1.8 TeV

Description: In the Standard Model (SM) of the elementary particles, the interactions among the known fundamental fermions (leptons and quarks) are mediated through gauge bosons which obey the symmetry: SU(3) {circle_times} SU(2) {circle_times} U(1). More precisely, the electroweak interaction [4-6] is described by a gauge symmetry SU(2) {circle_times} U(1) which is broken spontaneously. The electroweak symmetry breaking is implemented by the introduction of a complex scalar Higgs field which has a non-zero vacuum expectation value (vev). This way, the lagrangian of the theory remains invariant under SU(2) transformations, but quantization of the fields must start from a ground state which does not exhibit this symmetry, and therefore the full symmetry of the lagrangian is not manifest. Invariance of the theory under local SU(2) transformations implies the presence of vectorial gauge fields which mediate the electroweak interactions. The so called spontaneous symmetry breaking allows the quanta of these gauge fields, the W and Z bosons, to acquire a finite mass. The photon, the particle which mediates the electromagnetic interaction, remains massless. The Higgs boson is one of only two particles in the SM which have not yet been directly observed (the other is the {nu}{sub {tau}}, although there is indirect evidence of its existence). Although the SM does not predict the Higgs mass, a lower limit {approx} 100 GeV/c{sup 2} is set by LEPII data, and theoretical considerations prefer Higgs masses not higher than a few hundred GeV/c{sup 2}. At the Tevatron, a search for the Higgs boson is hard due to the small production cross section and the huge backgrounds that do not allow to see the signal clearly. It is still interesting, however, to perform sensitivity studies at the Tevatron. The easiest production channel to observe at the Tevatron is the associated production of Higgs with weak (W or Z) ...
Date: November 1, 1999
Creator: Cortabitarte, Rocio Vilar & /Cantabria U., Santander

High-resolution spectroscopic diagnostics of very high-temperature plasmas in the hard x-ray regime

Description: Motivated by the need for establishing a reliable database useful for the application of x-ray spectroscopic tools for the diagnostic of very high temperature plasmas, high-resolution crystal spectrometer measurements have been performed investigating the characteristic K-shell radiation of highly charged krypton and xenon. The measurements, which have been performed at the Electron-Beam-Ion-Trap (EBIT) facility of the Lawrence Livermore National Laboratory, include the investigation of the n = 2 {yields} 1 transitions in heliumlike krypton (Kr{sup 34+}) and innershell excited lithiumlike krypton (Kr{sup 33+}) utilizing a conventional reflection-type crystal spectrometer of von Hamos geometry. The electron-excitation-energy selective measurements map the contribution of the dielectronic recombination lines providing the means of accurate interpretation of the line profiles of the characteristic K{alpha} x-ray emission of plasmas. The high-resolution measurements of the n = 2 {yields} 1 transitions in heliumlike xenon (Xe{sup 52+}) and hydrogenlike xenon (Xe{sup 53+}) were based on a new transmission-type crystal spectrometer of DuMond geometry. The resolving power of the developed spectrometer was sufficient for charge state specific observation allowing the determination of the electron-impact excitation cross section for the hydrogen- and heliumlike K{alpha} transitions. The disagreement with theoretically predicted values is a measure of the magnitude of the Breit interaction for the highly charged high-Z ions.
Date: December 6, 1999
Creator: Widmann, K

Large eddy simulation of Rayleigh-Taylor instability using the arbitrary Lagrangian-Eulerian method

Description: This research addresses the application of a large eddy simulation (LES) to Arbitrary Lagrangian Eulerian (ALE) simulations of Rayleigh-Taylor instability. First, ALE simulations of simplified Rayleigh-Taylor instability are studied. The advantages of ALE over Eulerian simulations are shown. Next, the behavior of the LES is examined in a more complicated ALE simulation of Rayleigh-Taylor instability. The effects of eddy viscosity and stochastic backscatter are examined. The LES is also coupled with ALE to increase grid resolution in areas where it is needed. Finally, the methods studied above are applied to two sets of experimental simulations. In these simulations, ALE allows the mesh to follow expanding experimental targets, while LES can be used to mimic the effect of unresolved instability modes.
Date: December 1, 1999
Creator: Darlington, R

Low temperature y-ray spectrometers based on bulk superconducting and dielectric absorber crystals

Description: Many areas of research rely on the detection of radiation, in the form of single photons or particles. By measuring the photons or particles coming from an object a lot can be learned about the object under study. In some cases there is a simple need to know the number of photons coming from the source. In cases like this a simple counter, like a Geiger-Mueller survey meter, will suffice. In other cases one want to know the spectral distribution of the photons coming from the source. In cases like that a spectrometer is needed that can distinguish between photons with different energies, like a diffraction or transmission grating. The work presented in this thesis focused on the development of a new generation broad band spectrometer that has a high energy resolving power, combined with a high absorption efficiency for photon energies above 10 keV and up to 500 keV. The spectrometers we are developing are based on low-temperature sensors, like superconducting tunnel junctions or transition edge sensors, that are coupled to bulk absorber crystals. We use the low-temperature sensors because they can offer a significant improvement in energy resolving power, compared to conventional spectrometers. We couple the low-temperature sensors to bulk absorber crystals to increase the absorption efficiency. In this chapter I introduce different types of radiation detectors and spectrometers and areas where they are being used. I also discuss the history and motivation of low-temperature spectrometers and show some of the impressive results that have been achieved in this field over the last few years. Finally I discuss the outline of this thesis.
Date: November 19, 1999
Creator: Netel, H