UNT Libraries Government Documents Department - 5 Matching Results

Search Results

Atmospheric Radiation Measurement Program facilities newsletter, July 1999.
Summer research efforts continue in July with the SGP99 Hydrology Campaign headed by the US Department of Agriculture, Agricultural Research Service. Other participants are the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration, and the ARM Program. This campaign focuses on measuring soil moisture by using satellite-based instruments and takes place July 7--22, 1999. Soil moisture is an important component of Earth's hydrologic cycle and climate, but the understanding of it and the ability to measure it accurately are limited. Scientists need to understand soil moisture better so that it can be incorporated correctly into general circulation models. As an important factor in growing crops, soil moisture dictates a farmer's success or failure. Too much soil moisture can drown out croplands and cause flooding, whereas too little can lead to drought conditions, robbing crops of their life-supporting water. Decisions about which crops to plant and other land use issues depend on the understanding of soil moisture patterns. Soil moisture can be measured in various ways. ARM employs several direct methods using soil moisture probes buried from 1 inch to 6.5 feet below the surface. One type of probe has two stainless steel screens separated by a piece of fiberglass. Electrical resistance, which is a function of soil moisture content, is measured between the screens. Another type of probe measures soil temperature and the increase in temperature after the soil is heated by small heating element. From this measurement, the volume of water in the soil can be calculated.
Atmospheric radiation measurement program facilities newsletter, August 1999.
With the end of summer drawing near, the fall songbird migration season will soon begin. Scientists with the ARM Program will be able to observe the onset of the migration season as interference in the radar wind profiler (RWP) data. An RWP measures vertical profiles of wind and temperature directly above the radar from approximately 300 feet to 3 miles above the ground. The RWP accomplishes this by sending a pulse of electromagnetic energy skyward. Under normal conditions, the energy is scattered by targets in the atmosphere. Targets generally consist of atmospheric irregularities such as variations in temperature, humidity, and pressure over relatively short distances. During the spring and fall bird migration seasons, RWP beam signals are susceptible to overflying birds. The radar beams do not harm the birds, but the birds' presence hampers data collection by providing false targets to reflect the RWP beam, introducing errors into the data. Because of the wavelength of the molar beam, the number of individuals, and the small size of songbirds' bodies (compared to the larger geese or hawks), songbirds are quite likely to be sampled by the radar. Migrating birds usually fly with the prevailing wind, making their travel easier. As a result, winds from the south are ''enhanced'' or overestimated in the spring as the migrating birds travel northward, and winds from the north are overestimated in the fall as birds make their way south. This fact is easily confirmed by comparison of RWP wind data to wind data gathered by weather balloons, which are not affected by birds.
Atmospheric Radiation Measurement Program Facilities Newsletter - June 1999.
The Mesoscale Convective Systems (MCSs) Campaign is underway at the SGL CART site and will continue through September 1999. This field study is investigating the small-scale physics of precipitation and the convective dynamics of MCSs in the middle latitudes. An MCS is defined as a precipitation system that is 10--300 miles wide and contains deep convection at some time in its life span. MCSs occur in the midlatitudes of the US and can include large, isolated thunderstorms, squall lines, and mesoscale convective complexes.
Atmospheric Radiation Measurement Program facilities newsletter, October 1999
This newsletter contains two articles. The first is about problems at the 60-ft. instrument tower at Okmulgee State Park. Wasps have taken up residency at the tower which has hampered maintenance work there. The second article describes the cloud layer experiment at the Oklahoma site.
Atmospheric Radiation Measurements Program facilities newsletter, November 1999
This newletter begins a discussion on Lightning--Natures's light show. This issue explains what lightning is. Fortunately, lightning strikes on ARM's instruments occurs infrequently. Next month's issue will explain lightning safety and how ARM has dealt with lightning safety.