UNT Libraries Government Documents Department - 59 Matching Results

System maintenance June 24th between 9:00AM and 12:00PM CDT may cause brief service disruptions.

Search Results

Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory

Description: The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative electron microscopy techniques in strongly correlated electron systems and nanostructured materials. As a first step, with the support of Materials Science Division, Office of Basic Energy Science, US Department of Energy, and the New York State Office of Science, Technology, ...
Date: April 1, 2008
Creator: Zhu,Y. & Wall, J.

ACCELERATED PROCESSING OF SB4 AND PREPARATION FOR SB5 PROCESSING AT DWPF

Description: The Defense Waste Processing Facility (DWPF) initiated processing of Sludge Batch 4 (SB4) in May 2007. SB4 was the first DWPF sludge batch to contain significant quantities of HM or high Al sludge. Initial testing with SB4 simulants showed potential negative impacts to DWPF processing; therefore, Savannah River National Laboratory (SRNL) performed extensive testing in an attempt to optimize processing. SRNL's testing has resulted in the highest DWPF production rates since start-up. During SB4 processing, DWPF also began incorporating waste streams from the interim salt processing facilities to initiate coupled operations. While DWPF has been processing SB4, the Liquid Waste Organization (LWO) and the SRNL have been preparing Sludge Batch 5 (SB5). SB5 has undergone low-temperature aluminum dissolution to reduce the mass of sludge for vitrification and will contain a small fraction of Purex sludge. A high-level review of SB4 processing and the SB5 preparation studies will be provided.
Date: December 1, 2008
Creator: Herman, C

Acquisition of Crosswell Seismic Monitoring Data

Description: Crosswell seismic acquisition provides an ideal geometry for monitoring travel time changes in the subsurface. Analysis of delay time in terms of a characteristic frequency allows us to estimate optimal acquisition parameters (frequency and distance). We have deployed standard data acquisition equipment for continuous monitoring of crosswell travel time in two separate field experiments, with well spacing of 3 and 30 m. The acquisition hardware used for the field experiments is described, along with environmental effects (such as temperature) that influence the measurements. Two field experiments are described that correlate changes in travel time (and therefore velocity) with changes in barometric pressure. The results from the two field sites show a pressure sensitivity for velocity of 10{sup -6}/Pa to 10{sup -8}/Pa.
Date: February 15, 2008
Creator: Daley, T. M.; Niu, F.; Silver, P.G. & Majer, E.L.

Anisotropic Hexagonal Boron Nitride Nanomaterials - Synthesis and Applications

Description: Boron nitride (BN) is a synthetic binary compound located between III and V group elements in the Periodic Table. However, its properties, in terms of polymorphism and mechanical characteristics, are rather close to those of carbon compared with other III-V compounds, such as gallium nitride. BN crystallizes into a layered or a tetrahedrally linked structure, like those of graphite and diamond, respectively, depending on the conditions of its preparation, especially the pressure applied. Such correspondence between BN and carbon readily can be understood from their isoelectronic structures [1, 2]. On the other hand, in contrast to graphite, layered BN is transparent and is an insulator. This material has attracted great interest because, similar to carbon, it exists in various polymorphic forms exhibiting very different properties; however, these forms do not correspond strictly to those of carbon. Crystallographically, BN is classified into four polymorphic forms: Hexagonal BN (h-BN) (Figure 1(b)); rhombohedral BN (r-BN); cubic BN (c-BN); and wurtzite BN (w-BN). BN does not occur in nature. In 1842, Balmain [3] obtained BN as a reaction product between molten boric oxide and potassium cyanide under atmospheric pressure. Thereafter, many methods for its synthesis were reported. h-BN and r-BN are formed under ambient pressure. c-BN is synthesized from h-BN under high pressure at high temperature while w-BN is prepared from h-BN under high pressure at room temperature [1]. Each BN layer consists of stacks of hexagonal plate-like units of boron and nitrogen atoms linked by SP{sup 2} hybridized orbits and held together mainly by Van der Waals force (Fig 1(b)). The hexagonal polymorph has two-layered repeating units: AA'AA'... that differ from those in graphite: ABAB... (Figure 1(a)). Within the layers of h-BN there is coincidence between the same phases of the hexagons, although the boron atoms and nitrogen atoms are alternatively located along ...
Date: August 1, 2008
Creator: Han,W.Q.

Application of Electron Backscatter Diffraction to Phase Identification

Description: The identification of crystalline phases in solids requires knowledge of two microstructural properties: crystallographic structure and chemical composition. Traditionally, this has been accomplished using X-ray diffraction techniques where the measured crystallographic information, in combination with separate chemical composition measurements for specimens of unknown pedigrees, is used to deduce the unknown phases. With the latest microstructural analysis tools for scanning electron microscopes, both the crystallography and composition can be determined in a single analysis utilizing electron backscatter diffraction and energy dispersive spectroscopy, respectively. In this chapter, we discuss the approach required to perform these experiments, elucidate the benefits and limitations of this technique, and detail via case studies how composition, crystallography, and diffraction contrast can be used as phase discriminators.
Date: July 16, 2008
Creator: El-Dasher, B S & Deal, A

Associations between iron oxyhydroxide nanoparticle growth and metal adsorption/structural incorporation

Description: The interaction of metal ions and oxyanions with nanoscale mineral phases has not yet been extensively studied despite the increased recognition of their prevalence in natural systems as a significant component of geomedia. A combination of macroscopic uptake studies to investigate the adsorption behavior of As(V), Cu(II), Hg(II), and Zn(II) onto nanoparticulate goethite ({alpha}-FeOOH) as a function of aging time at elevated temperature (75 C) and synchrotron-based X-ray studies to track changes in both the sorption mode and the rate of nanoparticle growth reveal the effects that uptake has on particle growth. Metal(loid) species which sorb quickly to the iron oxyhydroxide particles (As(V), Cu(II)) appear to passivate the particle surface, impeding the growth of the nanoparticles with progressive aging; in contrast, species that sorb more slowly (Hg(II), Zn(II)) have considerably less impact on particle growth. Progressive changes in the speciation of these particular metals with time suggest shifts in the mode of metal uptake with time, possibly indicating structural incorporation of the metal(loid) into the nanoparticle; this is supported by the continued increase in uptake concomitant with particle growth, implying that metal species may transform from surface-sorbed species to more structurally incorporated forms. This type of incorporation would have implications for the long-term fate and mobility of metals in contaminated regions, and affect the strategy for potential remediation/modeling efforts.
Date: September 15, 2008
Creator: Kim, C.S.; Lentini, C.J. & Waychunas, G.A.

Automated Structure Solution with the PHENIX Suite

Description: Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix.refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI.
Date: June 9, 2008
Creator: Zwart, Peter H.; Zwart, Peter H.; Afonine, Pavel; Grosse-Kunstleve, Ralf W.; Hung, Li-Wei; Ioerger, Tom R. et al.

Bacteria in Permafrost

Description: Significant numbers of viable ancient microorganisms are known to be present within the permafrost. They have been isolated in both polar regions from the cores up to 400 m deep and ground temperatures of -27 C. The age of the cells corresponds to the longevity of the permanently frozen state of the soils, with the oldest cells dating back to {approx}3 million years in the Arctic, and {approx}5 million years in the Antarctic. They are the only life forms known to have retained viability over geological time. Thawing of the permafrost renews their physiological activity and exposes ancient life to modern ecosystems. Thus, the permafrost represents a stable and unique physicochemical complex, which maintains life incomparably longer than any other known habitats. If we take into account the depth of the permafrost layers, it is easy to conclude that they contain a total microbial biomass many times higher than that of the soil cover. This great mass of viable matter is peculiar to permafrost only.
Date: January 1, 2008
Creator: Gilichinsky, David A.; Vishnivetskaya, Tatiana A.; Petrova, Maya A.; Spirina, Elena V.; Mamikin, Vladimir & Rivkina, Elizaveta

Cases Adjudged in The Supreme Court at October Term, 2004

Description: Volume of the United States Reports containing the final decisions and opinions of the Supreme Court justices regarding cases between June 6 and October 3, 2005. Also includes notes regarding the members of the Supreme Court, orders, and other relevant materials. Index starts on page 1167.
Date: 2008
Creator: Wagner, Frank D.

Cases Adjudged in The Supreme Court at October Term, 2005

Description: Volume of the United States Reports containing the final decisions and opinions of the Supreme Court justices regarding cases between October 3, 2005, and February 27, 2006. Also includes notes regarding the members of the Supreme Court, orders, and other relevant materials. Index starts on page 1311.
Date: 2008
Creator: Wagner, Frank D.

Chapter 2: Sustainable and Unsustainable Developments in the U.S. Energy System

Description: Over the course of the nineteenth and twentieth centuries, the United States developed a wealthy society on the basis of cheap and abundant fossil fuel energy. As fossil fuels have become ecologically and economically expensive in the twenty-first century, America has shown mixed progress in transitioning to a more sustainable energy system. From 2000 to 2006, energy and carbon intensity of GDP continued favorable long-term trends of decline. Energy end-use efficiency also continued to improve; for example, per-capita electricity use was 12.76 MWh per person per year in 2000 and again in 2006, despite 16 percent GDP growth over that period. Environmental costs of U.S. energy production and consumption have also been reduced, as illustrated in air quality improvements. However, increased fossil fuel consumption, stagnant efficiency standards, and expanding corn-based ethanol production have moved the energy system in the opposite direction, toward a less sustainable energy system. This chapter reviews energy system developments between 2000 and 2006 and presents policy recommendations to move the United States toward a more sustainable energy system.
Date: May 1, 2008
Creator: Levine, Mark; Levine, Mark D. & Aden, Nathaniel T.

Collective phenomena in non-central nuclear collisions

Description: Recent developments in the field of anisotropic flow in nuclear collision are reviewed. The results from the top AGS energy to the top RHIC energy are discussed with emphasis on techniques, interpretation, and uncertainties in the measurements.
Date: October 20, 2008
Creator: Voloshin, Sergei A.; Poskanzer, Arthur M. & Snellings, Raimond

Detection of hexavalent uranium with inline and field-portable immunosensors

Description: An antibody that recognizes a chelated form of hexavalent uranium was used in the development of two different immunosensors for uranium detection. Specifically, these sensors were utilized for the analysis of groundwater samples collected during a 2007 field study of in situ bioremediation in a aquifer located at Rifle, CO. The antibody-based sensors provided data comparable to that obtained using Kinetic Phosphorescence Analysis (KPA). Thus, these novel instruments and associated reagents should provide field researchers and resource managers with valuable new tools for on-site data acquisition.
Date: October 2, 2008
Creator: Melton, Scott J.; Yu, Haini; Ali, Mehnaaz F.; Williams, Kenneth H; Wilkins, Michael J.; Long, Philip E. et al.

The effect of temperature on the speciation of U(VI) in sulfate solutions

Description: Sulfate, one of the inorganic constituents that could be present in the nuclear waste repository, forms complexes with U(VI) and affects its migration in the environment. Results show that the complexation of U(VI) with sulfate is enhanced by the increase in temperature. The effect of temperature on the complexation and speciation of U(VI) in sulfate solutions is discussed.
Date: September 15, 2008
Creator: Rao, Linfeng & Tian, Guoxin

Electron Backscatter Diffraction in Low Vacuum Conditions

Description: Most current scanning electron microscopes (SEMs) have the ability to analyze samples in a low vacuum mode, whereby a partial pressure of water vapor is introduced into the SEM chamber, allowing the characterization of nonconductive samples without any special preparation. Although the presence of water vapor in the chamber degrades electron backscatter diffraction (EBSD) patterns, the potential of this setup for EBSD characterization of nonconductive samples is immense. In this chapter we discuss the requirements, advantages and limitations of low vacuum EBSD (LV-EBSD), and present how this technique can be applied to a two-phase ceramic composite as well as hydrated biominerals as specific examples of when LV-EBSD can be invaluable.
Date: July 17, 2008
Creator: El-Dasher, B S & Torres, S G

EVAPORITE MICROBIAL FILMS, MATS, MICROBIALITES AND STROMATOLITES

Description: Evaporitic environments are found in a variety of depositional environments as early as the Archean. The depositional settings, microbial community and mineralogical composition vary significantly as no two settings are identical. The common thread linking all of the settings is that evaporation exceeds precipitation resulting in elevated concentrations of cations and anions that are higher than in oceanic systems. The Dead Sea and Storrs Lake are examples of two diverse modern evaporitic settings as the former is below sea level and the latter is a coastal lake on an island in the Caribbean. Each system varies in water chemistry as the Dead Sea dissolved ions originate from surface weathered materials, springs, and aquifers while Storrs Lake dissolved ion concentration is primarily derived from sea water. Consequently some of the ions, i.e., Sr, Ba are found at significantly lower concentrations in Storrs Lake than in the Dead Sea. The origin of the dissolved ions are ultimately responsible for the pH of each system, alkaline versus mildly acidic. Each system exhibits unique biogeochemical properties as the extreme environments select certain microorganisms. Storrs Lake possesses significant biofilms and stromatolitic deposits and the alkalinity varies depending on rainfall and storm activity. The microbial community Storrs Lake is much more diverse and active than those observed in the Dead Sea. The Dead Sea waters are mildly acidic, lack stromatolites, and possess a lower density of microbial populations. The general absence of microbial and biofilm fossilization is due to the depletion of HCO{sub 3} and slightly acidic pH.
Date: January 28, 2008
Creator: Brigmon, R; Penny Morris, P & Garriet Smith, G

The Exosporium of B.cereus Contains a Binding Site for gC1qR/p33: Implication in Spore Attachment and/or Entry.

Description: B. cereus, is a member of a genus of aerobic, gram-positive, spore-forming rod-like bacilli, which includes the deadly, B. anthracis. Preliminary experiments have shown that gC1qR binds to B.cereus spores that have been attached to microtiter plates. The present studies were therefore undertaken, to examine if cell surface gC1qR plays a role in B.cereus spore attachment and/or entry. Monolayers of human colon carcinoma (Caco-2) and lung cells were grown to confluency on 6 mm coverslips in shell vials with gentle swirling in a shaker incubator. Then, 2 {micro}l of a suspension of strain SB460 B.cereus spores (3x10{sup 8}/ml, in sterile water), were added and incubated (1-4 h; 36{sup 0} C) in the presence or absence of anti-gC1qR mAb-carbon nanoloops. Examination of these cells by EM revealed that: (1) When B. cereus endospores contacted the apical Caco-2 cell surface, or lung cells, gClqR was simultaneously detectable, indicating upregulation of the molecule. (2) In areas showing spore contact with the cell surface, gClqR expression was often adjacent to the spores in association with microvilli (Caco-2 cells) or cytoskeletal projections (lung cells). (3) Furthermore, the exosporia of the activated and germinating spores were often decorated with mAb-nanoloops. These observations were further corroborated by experiments in which B.cereus spores were readily taken up by monocytes and neutrophils, and this uptake was partially inhibited by mAb 60.11, which recognizes the C1q binding site on gC1qR. Taken together, the data suggest a role, for gC1qR at least in the initial stages of spore attachment and/or entry.
Date: January 1, 2008
Creator: GHEBREHIWET,B.; TANTRAL, L.; TITMUS, M.A.; PANESSA-WARREN, B.J.; TORTORA, G.T.; WONG, S.S. et al.

FCC Record, Cumulative Index, Volumes 20-22

Description: Biweekly, comprehensive compilation of decisions, reports, public notices, and other documents of the U.S. Federal Communications Commission.
Date: 2008
Creator: United States. Federal Communications Commission.