UNT Libraries Government Documents Department - 8 Matching Results

Search Results

Basic Tables for Chemical Analysis
Abstract: Tables of important data for use in the analytical chemistry laboratory are provided. These tables contain information for use in gas chromatography, liquid chromatography, infrared and ultraviolet spectrophotometry, mass spectrometry, and wet chemical techniques. Tables relating to safe practice in the analytical laboratory are also included.
Design, Evaluation, and Use of a Reverberation Chamber for Performing Electromagnetic Susceptibility/Vulnerability Measurements
Abstract: This report presents the results of work at the National Bureau of Standards, Boulder, Colorado, to carefully evaluate, document, develop (when necessary), and describe the methodology for performing radiated susceptibility/vulnerability measurements using a reverberation chamber. The report describes the reverberation chamber theory of operation, construction, evaluation, functional operation, and use for performing immunity measurements. It includes an estimate of measurement uncertainties derived empirically from test results and from comparisons with anechoic chamber measurements. Finally, it discusses the limitations and advantages of the measurement technique to assist potential users in determining the applicability for this technique to their electromagnetic compatibility (EMC) measurement needs.
Linear Gain: Standard Antennas Below 1000 MHz
Abstract: Gain and antenna parameters related to input impedance are calculated using a computer program called HVD6. This program uses well documented equations to compute these parameters for gain-standard antennas used in relative-gain or gain-transfer measurements at frequencies below 1000 MHz. The utility of this program is that it calculates gain patterns and input impedances for linear dipoles above perfect or imperfectly conducting plane ground and in free space, and for monopoles on perfectly conducting plane ground. Examples are included to illustrate the use of the program. Uncertainties in the calculated parameters are estimated to be less than those of the measured parameters.
A Statistical Characterization of Electroexplosive Devices Relevant to Electromagnetic Compatibility Assessment
Abstract: Electroexplosive devices (EEDs) are electrically fired explosive initiators used in a wide variety of applications. The nature of most of these applications requires that the devices function with near certainty when required and remain inactive otherwise. Recent concern with pulsed electromagnetic interference (EMI) and nuclear electromagnetic pulse (EMP) made apparent the lack of methodology for assessing EED vulnerability. A new and rigorous approach for characterizing EED firing levels is developed in the context of statistical linear models and is demonstrated in this paper. We combine statistical theory and methodology with thermodynamic modeling to determine the probability that an EED, of a particular type, fires when excited by a pulse of a given width and amplitude. The results can be applied to any type of EED for which the hot-wire explosive binder does not melt below the firing temperature. Included are methods.for assessing model validity and for obtaining probability plots, called "Firing Likelihood Plots". A method of measuring the thermal time constant of an EED is given. This parameter is necessary to evaluate the effect of a train of pulses. These statistical methods are both more general and more efficient than previous methods for EED assessment. The results provide information which is crucial for evaluating the effects of currents induced by impulsive electromagnetic fields of short duration relative to the EEDs thermal time constant.
Electromagnetic Compatibility and Interference Metrology
From abstract: The material included in this report is intended for a short course on electromagnetic compatibility/interference (EMC/EMI) metrology to be offered jointly by the staff of the Fields Characterization Group (723.03) and the Interference Characterization Group (723.04) of the Electromagnetic Fields Division (723). The purpose of this short course is to present a review of some of the radiated EMC/EMI measurement methods, to which the National Bureau of Standards (NBS) at Boulder, Colorado, has made significant contributions during the past two decades.
Automated Measurement of Frequency Response of Frequency-Modulated Generators Using the Bessel Null Method
From abstract: This paper describes a Bessel null technique to measure the frequency response of a frequency-modulated rf carrier and a program to automate frequency response measurements of signal generators with output frequencies from 0.450 to 2000 MHz. The measurements obtained using this technique are more precise than those obtained by a highly trained technician using a manual system.
Interactive FORTRAN Programs for Micro Computers to Calculate the Thermophysical Properties of Twelve Fluids (MIPROPS)
From abstract: The thermophysical and transport properties of selected fluids have been programmed in FORTRAN 77 which is available for micro computers. The input variables are any two of P, p, T (pressure, density, and temperature) in the single phase regions, and either P or T for the saturated liquid or vapor states. The output is pressure, density, temperature, internal energy, enthalpy, entropy, specific heat capacities (Cp and Cv), speed of sound and, in most cases, viscosity, thermal conductivity and dielectric constant.
A Study of Techniques for Measuring the Electromagnetic Shielding Effectiveness of Materials
Abstract: Shielding effectiveness relates to a material's ability to reduce the transmission of propagating fields in order to electromagnetically isolate one region from another. Because a complex material's shielding capability is difficult to predict, it often must be measured. A number of measurement approaches are studied including the use of a shielded room, coaxial transmission line holders, time domain signals, the dual TEM cell, and an apertured TEM cell in a reverberation chamber. In each case, we consider the system's frequency range, test sample requirements, test field type, dynamic range, time required, analytical background, and present data taken on a common set of materials.