UNT Libraries Government Documents Department - 8 Matching Results

Search Results

Reference Flat Pulse Generator
Introduction: A reference step-like pulse generator is described which has been developed at NBS. This generator can be used for accurately characterizing the step response of various kinds of trap ient recording equipment (oscilloscopes, waveform recorders, transient digitizers, etc.). Basic design principles are given as well as complete circuit diagrams and descriptions. An analysis of the output stage of the generator is presented together with the circuit models for developing a time-domain computer simulation program using extended- SCEPTRE. Preliminary specifications indicate that the NBS Reference Flat Pulse Generator provides a negative-going reference transition duration (90 to 10 percent) of 600 ps, *20 percent with baseline perturbations of less than *2 percent for less than 5 ns.
Design of the National Bureau of Standards Isotropic Magnetic Field Meter (MFM-10) 300 kHz to 100 MHz
From introduction: In this report the following will he discussed: (1) design consideration of the broadband magnetic field sensor, (2) overall design of the magnetic field meter, (3) performance of the meter, (4) calibration and operating procedures, (5) alignment and adjustment procedures, and (6) summary and conclusions.
Introduction to STARPAC: the Standards Time Series and Regression Package
From preface: STARPAC documentation is being published as a series of Technical Notes. This Note is the first in the series. It gives an overview of the STARPAC library, defines conventions used in the documentation, provides an example using STARPAC subroutines, and presents general background material. This Note includes information which is essential for using the STARPAC library, and users should be familiar with its contents before attempting to use any STARPAC subroutine.
Nonlinear Least Squares Regression Using STARPAC: The Standards Time Series and Regression Package
From preface: This Note documents 16 subroutines for nonlinear least squares regression. Twelve of these compute the least squares estimates, performing either weighted or unweighted analysis with either numerically approximated or user-supplied (analytic) derivatives. The other four are user-callable subroutines for two procedures used within the estimation code: the first selects optimum step sizes for approximating the partial derivatives of the model; and the second checks the validity of a user-supplied derivative subroutine.
A Comparison of Two Melting-Pressure Equations Constrained to Triple Point Using Data for Eleven Gases and Three Metals
Parameters determined by a least-squares method for the reduced Simon equation and for a new, empirical melting equation.
The Characteristics of Iris-Fed Millimeterwave Rectangular Microstrip Patch Antennas
From introduction: The fabrication of various iris-fed millimeterwave rectangular microstrip patch antennas is described. A model is proposed to describe the iris-fed antenna. Irises ranging in size from 15 percent of the area of the patch to the fully open waveguide are used to couple energy into the antenna. Resonance of the antenna is observed to be insensitive to the size of the iris for irises up to 115 percent of the size of the patch. A study is also made of th? relationship of coupling to the antenna as a function of position of the iris with respect to the transverse plane of the waveguide, the iris always being centered with respect to the patch. In general, the antenna has a VSWR in the waveguide feed on the order of 5:1 at resonance, except for the fully open waveguide which gives rise to a VSWR of 2.9:1 at resonance. Far-field antenna power patterns are observed to be quite broad with H-plane beamwidths on the order of 1300. Maximum antenna gain is seen to be 4.5 dBi with 3 dBi typical. An initial study is made of the microstrip patch antenna fed from a longitudinal waveguide wall. Results indicate that this feed structure is likely to prove valuable for microstrip patch antennas with coupling at least as good as for the transverse-fed patch added to the possibility of feeding of multiple patches from a single waveguide.
A Method to Quantify the Radiation Characteristics of an Unknown Interference Source
From introduction: A new method for determining the radiation characteristics of leakage from electronic equipment for interference studies is described in this report. Basically, an unintentional leakage source is considered to be electrically small, and may be characterized by three equivalent orthogonal electric dipole moments and three equivalent orthogonal magnetic dipole moments. When an unknown source object is placed at the center of a transverse electromagnetic (TEM) cell, its radiated energy couples into the fundamental transmission mode and propagates toward the two output ports of the TEM cell. With a hybrid junction inserted into a loop connecting the cell output ports, one is able to measure the sum and difference powers and the relative phase between the sum and difference outputs. Systematic measurements of these powers and phases at six different source object positions, based on a well-developed theory, are sufficient to determine the amplitudes and phases of the unknown component dipole moments, from which the detailed free-space radiation pattern of the unknown source and the total radiated power can be determined. Results of simulated theoretical examples and an experiment using a spherical dipole radiator are given to illustrate the theory and measurement procedure.
A System for Measuring Energy and Peak Power of Low-Level 1.064 [mu]m Laser Pulses
From introduction: For the first time, transfer standards have been developed for measuring 1.064 Pm laser pulses of duration about 10-100 ns, peak irradiance of about 10-8-10-4 W/cm2, and fluences of about 10-16-10-11 J/cm2 . These energy and power measurement devices use PIN and APD silicon detectors, respectively, and can be used as stable transfer standards with total uncertainties (random errors computed at the 95 percent confidence level) of 10 to 15 percent. The system for calibrating these transfer standards is also described and consists of a cw Nd:YAG laser beam acousto-optically modulated to provide low-level laser pulses of known peak power and energy. A detailed evaluation of systematic and random errors is also shown.