UNT Libraries Government Documents Department - 968 Matching Results

Search Results

Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy-ion collisions

Description: Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a {Rho}-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at {radical}s{sub NN} = 200 and 62 GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.
Date: July 5, 2010
Creator: Collaboration, STAR & Abelev, Betty

Environmental sensor networks and continuous data quality assurance to manage salinity within a highly regulated river basin

Description: This paper describes a new approach to environmental decision support for salinity management in the San Joaquin Basin of California that focuses on web-based data sharing using YSI Econet technology and continuous data quality management using a novel software tool, Aquarius.
Date: January 5, 2010
Creator: Quinn, N.W.T.; Ortega, R. & Holm, L.

Observation of pi+pi-pi+pi- photoproduction in ultraperipheral heavy-ion collisions at sqrt sNN = 200 GeV at the STAR detector

Description: We present a measurement of {pi}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} photonuclear production in ultra-peripheral Au-Au collisions at {radical}s{sub NN} = 200 GeV from the STAR experiment. The {pi}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} final states are observed at low transverse momentum and are accompanied by mutual nuclear excitation of the beam particles. The strong enhancement of the production cross section at low transverse momentum is consistent with coherent photoproduction. The {pi}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} invariant mass spectrum of the coherent events exhibits a broad peak around 1540 {+-} 40 MeV/c{sup 2} with a width of 570 {+-} 60 MeV/c{sup 2}, in agreement with the photoproduction data for the {rho}{sup 0}(1700). We do not observe a corresponding peak in the {pi}{sup +}{pi}{sup -} final state and measure an upper limit for the ratio of the branching fractions of the {rho}{sup 0}(1700) to {pi}{sup +}{pi}{sup -} and {pi}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} of 2.5% at 90% confidence level. The ratio of {rho}{sup 0}(1700) and {rho}{sup 0}(770) coherent production cross sections is measured to be 13.4 {+-} 0.8{sub stat.} {+-} 4.4{sub syst.}%.
Date: July 5, 2010
Creator: Collaboration, STAR & Abelev, Betty

Charged and strange hadron elliptic flow in Cu+Cu collisions at sqrt sNN = 62.4 and 200 GeV

Description: We present the results of an elliptic flow, v{sub 2}, analysis of Cu+Cu collisions recorded with the STAR detector at RHIC at {radical}s{sub NN} = 62.4 and 200 GeV. Elliptic flow as a function of transverse momentum, v{sub 2}(p{sub T}), is reported for different collision centralities for charged hadrons h{sup {+-}}, and strangeness containing hadrons K{sub S}{sup 0}, {Lambda}, {Xi}, {phi} in the midrapidity region |{eta}| < 1.0. Significant reduction in systematic uncertainty of the measurement due to non-flow effects has been achieved by correlating particles at midrapidity, |{eta}| < 1.0, with those at forward rapidity, 2.5 < |{eta}| < 4.0. We also present azimuthal correlations in p+p collisions at {radical}s = 200 GeV to help estimating non-flow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au+Au collisions at {radical}s{sub NN} = 200 GeV. We observe that v{sub 2}(p{sub T}) of strange hadrons has similar scaling properties as were first observed in Au+Au collisions, i.e.: (i) at low transverse momenta, p{sub T} < 2 GeV/c, v{sub 2} scales with transverse kinetic energy, m{sub T} - m, and (ii) at intermediate p{sub T}, 2 < p{sub T} < 4 GeV/c, it scales with the number of constituent quarks, n{sub q}. We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v{sub 2}(p{sub T}) for K{sub S}{sup 0} and {Lambda}. Eccentricity scaled v{sub 2} values, v{sub 2}/{var_epsilon}, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au+Au collisions which go further in density shows v{sub 2}/{var_epsilon} depend on the system size, number of participants N{sub part}. This indicates that the ideal hydrodynamic limit is not reached in Cu+Cu collisions, presumably because the assumption of thermalization is not attained.
Date: July 5, 2010
Creator: Collaboration, STAR & Abelev, Betty

Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

Description: Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the system's orbital momentum axis. We investigate a three particle azimuthal correlator which is a {Rho} even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at {radical}s{sub NN} = 200 GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation.
Date: July 5, 2010
Creator: Collaboration, STAR & Abelev, Betty

Long range rapidity correlations and jet production in high energy nuclear collisions

Description: The STAR Collaboration at RHIC presents a systematic study of high transverse momentum charged di-hadron correlations at small azimuthal pair separation {Delta}{phi}, in d+Au and central Au+Au collisions at {radical}s{sub NN} = 200 GeV. Significant correlated yield for pairs with large longitudinal separation {Delta}{eta} is observed in central Au+Au, in contrast to d+Au collisions. The associated yield distribution in {Delta}{eta} x {delta}{phi} can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component which is narrow in {Delta}{phi} and depends only weakly on {Delta}{eta}, the 'ridge'. Using two systematically independent analyses, finite ridge yield is found to persist for trigger p{sub t} > 6 GeV/c, indicating that it is correlated with jet production. The transverse momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range (2 < p{sub t} < 4 GeV/c).
Date: July 5, 2010
Creator: Collaboration, STAR & Abelev, Betty

Longitudinal Spin Transfer to Lambda and Lambda bar Hyperons in Polarized Proton-Proton Collisions at sqrt s = 200 GeV

Description: The longitudinal spin transfer, D{sub LL}, from high energy polarized protons to {Lambda} and {bar {Lambda}} hypersons has been measured for the first time in proton-proton collisions at {radical}s = 200 GeV with the STAR detector at RHIC. The measurements cover pseudorapidity, {eta}, in the range |{eta}| < 1.2 and transverse momenta, p{sub T}, up to 4 GeV/c. The longitudinal spin transfer is found to be D{sub LL} = -0.03{+-}0.13(stat){+-}0.04(syst) for inclusive {Lambda} and D{sub LL} = -0.12{+-}0.08(stat){+-}0.03(syst) for inclusive {bar {Lambda}} hyperons with <{eta}> = 0.5 and <p{sub T}> = 3.7 GeV/c. The dependence on {eta} and p{sub T} is presented.
Date: July 5, 2010
Creator: Collaboration, STAR & Abelev, Betty

Simulations of a stretching bar using a plasticity model from the shear transformation zone theory

Description: An Eulerian simulation is developed to study an elastoplastic model of amorphous materials that is based upon the shear transformation zone theory developed by Langer and coworkers. In this theory, plastic deformation is controlled by an effective temperature that measures the amount of configurational disorder in the material. The simulation is used to model ductile fracture in a stretching bar that initially contains a small notch, and the effects of many of the model parameters are examined. The simulation tracks the shape of the bar using the level set method. Within the bar, a finite difference discretization is employed that makes use of the essentially non-oscillatory (ENO) scheme. The system of equations is moderately stiff due to the presence of large elastic constants, and one of the key numerical challenges is to accurately track the level set and construct extrapolated field values for use in boundary conditions. A new approach to field extrapolation is discussed that is second order accurate and requires a constant amount of work per gridpoint.
Date: June 5, 2010
Creator: Rycroft, Chris H. & Gibou, Frederic

Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

Description: Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg equivalents. AMS provides an sensitive, accurate ...
Date: February 5, 2010
Creator: Keck, B D; Ognibene, T & Vogel, J S

Elastic properties of Pu metal and Pu-Ga alloys

Description: We present elastic properties, theoretical and experimental, of Pu metal and Pu-Ga ({delta}) alloys together with ab initio equilibrium equation-of-state for these systems. For the theoretical treatment we employ density-functional theory in conjunction with spin-orbit coupling and orbital polarization for the metal and coherent-potential approximation for the alloys. Pu and Pu-Ga alloys are also investigated experimentally using resonant ultrasound spectroscopy. We show that orbital correlations become more important proceeding from {alpha} {yields} {beta} {yields} {gamma} plutonium, thus suggesting increasing f-electron correlation (localization). For the {delta}-Pu-Ga alloys we find a softening with larger Ga content, i.e., atomic volume, bulk modulus, and elastic constants, suggest a weakened chemical bonding with addition of Ga. Our measurements confirm qualitatively the theory but uncertainties remain when comparing the model with experiments.
Date: January 5, 2010
Creator: Soderlind, P; Landa, A; Klepeis, J E; Suzuki, Y & Migliori, A

Comparison of the Growth of Pore and Shear Band Driven Detonations

Description: The authors examine the effect of ignition site topology on the rate of reaction of a detonating material. The hot plane, hot line, and hot finite patch topologies are added to previous work on hot spot ignition. The hot plane and hot patch ignition forms would arise from ignition due to shear banding, and the hot line ignition form is shown to complete the topological set. The limiting behavior of instantaneous ignition is considered and used to construct simple reaction rate vs. extent of reaction forms. they fit simple form factor reaction rates, as might be available in most hydro codes with reactive flow modes, to the simple topologies. The difference between the rate vs. extent forms are examined with the objective that one should be able to use this information to distinguish between the different topological ignition forms.
Date: March 5, 2010
Creator: Nichols, A L

3D Simulations of the NIF Indirect Drive Ignition Target Design

Description: The radiation hydrodynamics code Hydra is used to quantify the sensitivity of different NIF ignition point designs to several 3D effects. Each of the 48 NIF quads is included in the calculations and is allowed to have different power. With this model they studied the effect on imploded core symmetry of discrete laser spots (as opposed to idealized azimuthally-averaged rings) and random variations in laser power.
Date: January 5, 2010
Creator: Jones, O S; Milovich, J L; Callahan, D A; Edwards, M J; Landen, O L; Salmonson, J D et al.

Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

Description: The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.
Date: August 5, 2010
Creator: Programs, NSTec Environmental

Annual report of monitoring at Morrill, Kansas, in 2009 .

Description: In September 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) initiated periodic sampling of groundwater in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Morrill, Kansas. The sampling at Morrill is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE 2005), to monitor levels of carbon tetrachloride contamination identified in the groundwater at this site (Argonne 2004, 2005a). This report provides results for monitoring events in April and September 2009. Under the KDHE-approved monitoring plan (Argonne 2005b), groundwater was initially sampled twice yearly for a period of two years (in fall 2005, in spring and fall 2006, and in spring and fall 2007). The samples were analyzed for volatile organic compounds (VOCs), as well as for selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The analytical results for groundwater sampling events at Morrill from September 2005 to October 2008 were documented previously (Argonne 2006a,b, 2007, 2008a,b, 2009). Those results consistently demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 risk-based screening level of 5.0 {micro}g/L for this compound, in a groundwater plume extending generally south-southeastward from the former CCC/USDA facility, toward Terrapin Creek at the south edge of the town. Low levels ({le} 1.3 {micro}g/L) of carbon tetrachloride were persistently detected at monitoring well MW8S, on the bank of an intermittent tributary to Terrapin Creek. This observation suggested a possible risk of contamination of the surface waters of the creek. That concern is the regulatory driver for ongoing monitoring. In light of the early findings, in 2006 the CCC/USDA recommended expansion of the approved monitoring program ...
Date: August 5, 2010
Creator: LaFreniere, L. M. & Division, Environmental Science

Final report : phase I investigation at the former CCC/USDA grain storage facility in Savannah, Missouri.

Description: From approximately 1949 until 1970, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility on federally owned property approximately 0.25 mi northwest of Savannah, Missouri (Figure 1.1). During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities. In November 1998, carbon tetrachloride was detected in a private well (Morgan) roughly 50 ft south of the former CCC/USDA facility, as a result of state-wide screening of private wells near former CCC/USDA facilities, conducted in Missouri by the U.S. Environmental Protection Agency (EPA 1999). The 1998 and subsequent investigations by the EPA and the Missouri Department of Natural Resources (MoDNR) confirmed the presence of carbon tetrachloride in the Morgan well, as well as in a second well (on property currently owned and occupied by the Missouri Department of Transportation [MoDOT]), described as being approximately 400 ft east of the former CCC/USDA facility. The identified concentrations in these two wells were above the EPA maximum contaminant level (MCL) and the default target level (DTL) values of 5.0 {micro}g/L for carbon tetrachloride in water used for domestic purposes (EPA 1999; MoDNR 2000a,b, 2006). (The DTL is defined in Section 4.) Because the observed contamination in the Morgan and MoDOT wells might be linked to the past use of carbon tetrachloride-based fumigants at its former grain storage facility, the CCC/USDA is conducting an investigation to (1) characterize the source(s), extent, and factors controlling the subsurface distribution and movement of carbon tetrachloride at Savannah and (2) evaluate the potential risks to human health, public welfare, and the environment posed by the contamination. This work is being performed in accord with the Intergovernmental Agreement established between the Farm Service Agency of the USDA ...
Date: August 5, 2010
Creator: LaFreniere, L. M. & Division, Environmental Science

Fighting Fire with Fire: Superlattice Cooling of Silicon Hotspots to Reduce Global Cooling Requirements

Description: The running costs of data centers are dominated by the need to dissipate heat generated by thousands of server machines. Higher temperatures are undesirable as they lead to premature silicon wear-out; in fact, mean time to failure has been shown to decrease exponentially with temperature (Black's law). Although other server components also generate heat, microprocessors still dominate in most server configurations and are also the most vulnerable to wearout as the feature sizes shrink. Even as processor complexity and technology scaling have increased the average energy density inside a processor to maximally tolerable levels, modern microprocessors make extensive use of hardware structures such as the load-store queue and other CAM-based units, and the peak temperatures on chip can be much worse than even the average temperature of the chip. In recent studies, it has been shown that hot-spots inside a processor can generate {approx} 800W/cm{sup 2} heat flux whereas the average heat flux is only 10-50W/cm{sup 2}, and due to this disparity in heat generation, the temperature in hot spots may be up to 30 C more than average chip temperature. The key problem processor hot-spots create is that in order to prevent some critical hardware structures from wearing out faster, the air conditioners in a data center have to be provisioned for worst case requirements. Worse yet, air conditioner efficiencies decrease exponentially as the desired ambient temperature decreases relative to the air outside. As a result, the global cooling costs in data centers, which nearly equals the IT equipment power consumption, are directly correlated with the maximum hot spot temperatures of processors, and there is a distinct requirement for a cooling technique to mitigate hot-spots selectively so that the global air conditioners can operate at higher, more efficient, temperatures. We observe that localized cooling via superlattice microrefrigeration presents exactly ...
Date: October 5, 2010
Creator: Biswas, S; Tiwari, M; Sherwood, T; Theogarajan, L & Chong, F T

Frequency stabilization via the mixed mode in three mode HeNe lasers

Description: This paper describes a three mode HeNe laser frequency stabilization technique using the mixed mode frequency to obtain a fractional frequency stability of 2 x 10{sup -11}. The mixed mode frequency occurs due to optical nonlinear interactions with the adjacent modes at each of the three modes. In precision displacement interferometry systems, the laser source frequency must be stabilized to provide an accurate conversion ratio between phase change and displacement. In systems, such as lithography applications, which require high speed, high accuracy and low data age uncertainty, it is also desirable to avoid periodic nonlinearities, which reduces computation time and errors. One method to reduce periodic nonlinearity is to spatially separate the measurement and reference beams to prevent optical mixing, which has been shown for several systems. Using spatially separated beams and the proper optical configuration, the interferometer can be fiber fed, which can increase the interferometer's stability by reducing the number of beam steering optical elements. Additionally, as the number of measurement axes increases, a higher optical power from the laser source is necessary.
Date: February 5, 2010
Creator: Ellis, J D; Joo, K; Buice, E S; Spronck, J W & Munnig Schmidt, R H

Towards the understanding of PETN initiation by a fast, high power arc source

Description: We present a thorough characterization of a capacitor driven arc source that can deliver up to 200 mJ of energy to the arc and high explosive in a well-controlled, repeatable manner on the hundreds of nanoseconds time-scale. Our ultimate purpose is to create a platform to study high explosive kinetics under extreme conditions of high-temperature. In the current paper, we characterize the behavior of our arc source by electrical discharge over a thin PETN film. Temperature and density are determined by time-resolved atomic emission spectroscopy on the nano- to microsecond time scale along with fast photographic imaging to capture time-resolved images of the expanding plasma. We also discuss preliminary simulations of arc plasma using a 1-D hydrodynamic model. Comparisons of these simulations with experimental data are presented. Ultimately our goal is to create a platform that will generate conditions of high temperature in order to study high explosive kinetics. We believe that our arc source platform can be further combined with a time-resolved vibrational spectroscopy (e.g. IR or Raman) to study chemical kinetics under extreme conditions. High temperature conditions may access novel reactive pathways that are different from either shock or slower thermal processes that are substantially lower in temperature.
Date: March 5, 2010
Creator: Grant, C D; Tang, V; Glascoe, E A & McCarrick, J F

Fracture Induced Sub-Band Absorption as a Precursor to Optical Damage on Fused Silica Surfaces

Description: The optical damage threshold of indentation induced flaws on fused silica surfaces was explored. Mechanical flaws were characterized by laser damaged testing, SEM, optical, and photoluminescence microscopy. Localized polishing, chemical etching, and the control of indentation morphology were used to isolate the structural features which limit optical damage. A thin defect layer on fracture surfaces, including those smaller than the wavelength of visible light, was found to be the dominant source of laser damage initiation during illumination with 355nm, 3ns laser pulses. Little evidence was found that either displaced or densified material or fluence intensification plays a significant role in optical damage at fluences >35J/cm{sup 2}. Elimination of the defect layer was shown to increase the overall damage performance of fused silica optics.
Date: March 5, 2010
Creator: Miller, P E; Bude, J D; Suratwala, T I; Shen, N; Laurence, T A; Steele, W A et al.

Thermal Degradation Studies of Polyurethane/POSS Nanohybrid Elastomers

Description: Reported here is the synthesis of a series of Polyurethane/POSS nanohybrid elastomers, the characterization of their thermal stability and degradation behavior at elevated temperatures using a combination of Thermal Gravimetric Analysis (TGA) and Thermal Volatilization Analysis (TVA). A series of PU elastomers systems have been formulated incorporating varying levels of 1,2-propanediol-heptaisobutyl-POSS (PHIPOSS) as a chain extender unit, replacing butane diol. The bulk thermal stability of the nanohybrid systems has been characterized using TGA. Results indicate that covalent incorporation of POSS into the PU elastomer network increase the non-oxidative thermal stability of the systems. TVA analysis of the thermal degradation of the POSS/PU hybrid elastomers have demonstrated that the hybrid systems are indeed more thermally stable when compared to the unmodified PU matrix; evolving significantly reduced levels of volatile degradation products and exhibiting a {approx}30 C increase in onset degradation temperature. Furthermore, characterization of the distribution of degradation products from both unmodified and hybrid systems indicate that the inclusion of POSS in the PU network is directly influencing the degradation pathways of both the soft and hard block components of the elastomers: The POSS/PU hybrid systems show reduced levels of CO, CO2, water and increased levels of THF as products of thermal degradation.
Date: March 5, 2010
Creator: Lewicki, J P; Pielichowski, K; TremblotDeLaCroix, P; Janowski, B; Todd, D & Liggat, J J

Partial Defect Verification of the Pressurized Water Reactor Spent Fuel Assemblies

Description: The International Atomic Energy Agency (IAEA) has the responsibility to carry out independent inspections of all nuclear material and facilities subject to safeguards agreements in order to verify compliance with non-proliferation commitments. New technologies have been continuously explored by the IAEA and Member States to improve the verification measures to account for declared inventory of nuclear material and detect clandestine diversion and production of nuclear materials. Even with these efforts, a technical safeguards challenge has remained for decades for the case of developing a method in identifying possible diversion of nuclear fuel pins from the Light Water Reactor (LWR) spent fuel assemblies. We had embarked on this challenging task and successfully developed a novel methodology in detecting partial removal of fuel from pressurized water reactor spent fuel assemblies. The methodology uses multiple tiny neutron and gamma detectors in the form of a cluster and a high precision driving system to obtain underwater radiation measurements inside a Pressurized Water Reactor (PWR) spent fuel assembly without any movement of the fuel. The data obtained in such a manner can provide spatial distribution of neutron and gamma flux within a spent fuel assembly. The combined information of gamma and neutron signature is used to produce base signatures and they are principally dependent on the geometry of the detector locations, and exhibit little sensitivity to initial enrichment, burn-up or cooling time. A small variation in the fuel bundle such as a few missing pins changes the shape of the signature to enable detection. This resulted in a breakthrough method which can be used to detect pin diversion without relying on the nuclear power plant operator's declared operation data. Presented are the results of various Monte Carlo simulation studies and experiments from actual commercial PWR spent fuel assemblies.
Date: February 5, 2010
Creator: Ham, Y S & Sitaraman, S

Pressure-induced isostructural transition in PdN2

Description: We show that a synthesized Pd-N compound crystallize into the pyrite structure by comparison of experimental and calculated Raman intensities. The decreasing Raman intensities with decreasing pressure is explained by a closing of the fundamental band gap. We further discuss the experimental decomposition of this compound at 11 GPa in terms of an isostructural transition within the pyrite structure.
Date: March 5, 2010
Creator: Aberg, D; Erhart, P; Crowhurst, J; Zaug, J M; Goncharov, A F & Sadigh, B

A novel heterodyne displacement interferometer with no detectable periodic nonlinearity and optical resolution doubling

Description: This paper describes a novel heterodyne laser interferometer with no significant periodic nonlinearity for linear displacement measurements. Moreover, the optical configurations have the benefit of doubling the measurement resolution when compared to its respective traditional counterparts. Experimental results show no discernable periodic nonlinearity for a retro-reflector interferometer and plane mirror interferometer configurations with a noise level below 20 pm. The incoming laser beams of the interferometers are achieved by utilizing two single mode optical fibers. To determine the stability of the optical fiber couplers a fiber delivery prototype was also built and tested.
Date: February 5, 2010
Creator: Joo, K; Ellis, J D; Buice, E S; Spronck, J W & Munnig Schmidt, R H

Paleoclimatic implications of glacial and postglacial refugia for Pinus pumila in western Beringia

Description: Palynological results from Julietta Lake currently provide the most direct evidence to support the existence of a glacial refugium for Pinus pumila in mountains of southwestern Beringia. Both percentages and accumulation rates indicate the evergreen shrub survived until at least {approx}19,000 14C yr B.P. in the Upper Kolyma region. Percentage data suggest numbers dwindled into the late glaciation, whereas pollen accumulation rates point towards a more rapid demise shortly after {approx}19,000 14C yr B.P. Pinus pumila did not re-establish in any great numbers until {approx}8100 14C yr B.P., despite the local presence {approx}9800 14C yr B.P. of Larix dahurica, which shares similar summer temperature requirements. The postglacial thermal maximum (in Beringia {approx}11,000-9000 14C yr B.P.) provided Pinus pumila shrubs with equally harsh albeit different conditions for survival than those present during the LGM. Regional records indicate that in this time of maximum warmth Pinus pumila likely sheltered in a second, lower-elevation refugium. Paleoclimatic models and modern ecology suggest that shifts in the nature of seasonal transitions and not only seasonal extremes have played important roles in the history of Pinus pumila over the last {approx}21,000 14C yr B.P.
Date: February 5, 2010
Creator: Anderson, P M; Lozhkin, A V; Solomatkina, T B & Brown, T A