UNT Libraries Government Documents Department - 8,463 Matching Results

Search Results

open access

Ab Initio Thermodynamic Study of the CO2 Capture Properties of Potassium Carbonate Sesquihydrate, K2CO3·1.5H2O

Description: By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO2 absorption/desorption reactions with dehydrated potassium carbonates through K2CO3·1.5H2O + CO2 = 2KHCO3 + 0.5H2O(g) are analyzed. The energy change and the chemical potential of this reaction have been calculated and used to evaluate its thermodynamic properties and phase transitions. The results indicate that the K2CO3·1.5H2O can only be applied for postcombustion CO2 capture technology at temperatures lower than its phase transition temperature, which depends on the CO2 pressure and the steam pressure with the best range being PH2O ≤ 1.0 bar. Above the phase transition temperature, the sorbent will be regenerated into anhydrous K2CO3. If the steam pressure PH2O is much greater than 1.0 bar, it is possible to use the K2CO3·1.5H2O sorbent for precombustion CO2 capture technology. Compared to anhydrous K2CO3, K2CO3·1.5H2O requires less energy for regeneration.
Date: January 1, 2012
Creator: Duan, Yuhua; Luebkes, David R.; Pennline, Henry W.; Li, Bingyun Li; Janik, Michael J. & Halley, Woods
open access

Addendum to the Corrective Action Decision Document/Closure Report for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters Nevada National Security Site, Nevada, Revision 0

Description: This document constitutes an addendum to the Corrective Action Decision Document/Closure Report for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters, Nevada Test Site, Nevada (Revision 0), April 2011.
Date: January 1, 2012
Creator: Sloop, Patrick Matthews and Christy
open access

AFIP-4 Irradiation Summary Report

Description: The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-4 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of research reactor fuel plates. The AFIP-4 test further examine the fuel/clad interface and its behavior under extreme conditions. After irradiation, fission gas retention measurements will be performed during post irradiation (PIE)1,2. The following report summarizes the life of the AFIP-4 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.
Date: January 1, 2012
Creator: Perez, Danielle M; Lillo, Misti A; Chang, Gray S.; Roth, Glenn A; Woolstenhulme, Nicolas & Wachs, Daniel M
open access

Air Monitoring Network at Tonopah Test Range: Network Description, Capabilities, and Analytical Results

Description: During the period April to June 2008, at the behest of the Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Activity. DRI has operated these stations since that time. A third station was deployed in the period May to September 2011. The TTR is located within the northwest corner of the Nevada Test and Training Range (NTTR), and covers an area of approximately 725.20 km2 (280 mi2). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from Soils Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.
Date: January 1, 2012
Creator: Hartwell William T.,Daniels Jeffrey,Nikolich George,Shadel Craig,Giles Ken,Karr Lynn,Kluesner Tammy
open access

All Composite Data Products: National FCEV Learning Demonstration With Updates Through January 18, 2012

Description: This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes all the composite data products produced to date (with updates through January 18, 2012) as part of the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration.
Date: January 1, 2012
Creator: Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C. & Saur, G.
open access

An Analysis of Department of Defense Instruction 8500.2 'Information Assurance (IA) Implementation.'

Description: The Department of Defense (DoD) provides its standard for information assurance in its Instruction 8500.2, dated February 6, 2003. This Instruction lists 157 'IA Controls' for nine 'baseline IA levels.' Aside from distinguishing IA Controls that call for elevated levels of 'robustness' and grouping the IA Controls into eight 'subject areas' 8500.2 does not examine the nature of this set of controls, determining, for example, which controls do not vary in robustness, how this set of controls compares with other such sets, or even which controls are required for all nine baseline IA levels. This report analyzes (1) the IA Controls, (2) the subject areas, and (3) the Baseline IA levels. For example, this report notes that there are only 109 core IA Controls (which this report refers to as 'ICGs'), that 43 of these core IA Controls apply without variation to all nine baseline IA levels and that an additional 31 apply with variations. This report maps the IA Controls of 8500.2 to the controls in NIST 800-53 and ITGI's CoBIT. The result of this analysis and mapping, as shown in this report, serves as a companion to 8500.2. (An electronic spreadsheet accompanies this report.)
Date: January 1, 2012
Creator: Campbell, Philip LaRoche
open access

Analysis of Unit-Level Changes in Operations with Increased SPP Wind from EPRI/LCG Balancing Study

Description: Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The Department of Energy funded the project 'Integrating Midwest Wind Energy into Southeast Electricity Markets' to be led by EPRI in coordination with the main authorities for the regions: SPP, Entergy, TVA, Southern Company and OPC. EPRI utilized several subcontractors for the project including LCG, the developers of the model UPLAN. The study aims to evaluate the operating cost benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of regional cooperation for integrating mid-western wind energy into southeast electricity markets. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. DOE funded Oak Ridge National Laboratory to provide additional support to the project, including a review of results and any side analysis that may provide additional insight. This report is a unit-by-unit analysis of changes in operations due to the different scenarios used in the overall study. It focuses on the change in capacity factors and the number of start-ups required …
Date: January 1, 2012
Creator: Hadley, Stanton W
open access

Arundo Donax Analysis Report

Description: This is a summary report of preliminary analysis conducted on Arundo Donax. Arundo Donax was received from Greenwood Resources via Portland General Electric. PGE plans to transition a coal-fired boiler to 100% biomass by 2020, and has partnered with EPRI and INL to conduct the necessary testing and development to understand what needs to take place to make this transition. Arundo Donax is a promising energy crop for biopower, and is as yet relatively untested and uncharacterized. The INL has begun initial characterization of this material, and this summary report presents the initial findings.
Date: January 1, 2012
Creator: Nichol, Corrie I. & Westover, Tyler L.
open access

The Capabilities of the upgraded MIPP experiment with respect to Hypernuclear physics

Description: We describe the state of analysis of the MIPP experiment, its plans to upgrade the experiment and the impact such an upgraded experiment will have on hypernuclear physics. The upgraded MIPP experiment is designed to measure the properties of strong interaction spectra form beams {pi}{sup {+-}}, K{sup {+-}}, and p{sup {+-}}, for momenta ranging from 1 GeV/c to 120 GeV/c. The layout of the apparatus in the data taken so far can be seen in Figure 1. The centerpiece of the experiment is the time projection chamber, which is followed by the time of flight counter, a multi-cell Cerenkov detector and the RICH detector. The TPC can identify charged particles with momenta less than 1 GeV/c using dE/dx, the time of flight will identify particles below approximately 2 GeV/c, the multi-cell Cerenkov detector is operational from 2.5 GeV/c to 14 GeV/c and the RICH detector can identify particles up to 120 GeVc. Following this is an EM and hadronic calorimeter capable of detecting forward going neutrons and photons. The experiment has been busy analyzing its data taken on various nuclei and beam conditions. The table 2 shows the data taken by MIPP I to date. We have almost complete acceptance in the forward hemisphere in the lab using the TPC. The reconstruction capabilities of the TPC can be seen in Figure 3. The particle identification capabilities of the TPC can be seen in Figure 4. The time of flight system provides further measurement of the particles with momenta less than 2 GeV/c. Figure 5 shows the time of flight data where a kaon peak is clearly visible.
Date: January 1, 2012
Creator: Raja, Rajendran
open access

CASE STUDY OF DUCT RETROFIT OF A 1985 HOME AND GUIDELINES FOR ATTIC AND CRAWL SPACE DUCT SEALING

Description: The U.S. Department of Energy (DOE) is fully committed to research for developing the information and capabilities necessary to provide cost-effective residential retrofits yielding 50% energy savings within the next several years. Heating, ventilation, and air conditioning (HVAC) is the biggest energy end use in the residential sector, and a significant amount of energy can be wasted through leaky ductwork in unconditioned spaces such as attics and crawl spaces. A detailed duct sealing case study is presented for one house along with nine brief descriptions of other duct retrofits completed in the mixed-humid climate. Costs and estimated energy savings are reported for most of the ten houses. Costs for the retrofits ranged from $0.92/ft2 to $1.80/ft2 of living space and estimated yearly energy cost savings due to the duct retrofits range from 1.8% to 18.5%. Lessons learned and duct sealing guidelines based on these ten houses, as well as close work with the HVAC industry in the mixed-humid climate of East Tennessee, northern Georgia, and south-central Kentucky are presented. It is hoped that the lessons learned and guidelines will influence local HVAC contractors, energy auditors, and homeowners when diagnosing or repairing HVAC duct leakage and will be useful for steering DOE s future research in this area.
Date: January 1, 2012
Creator: Boudreaux, Philip R; Christian, Jeffrey E & Jackson, Roderick K
open access

Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)

Description: Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.
Date: January 1, 2012
Creator: Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D. & Schreck, S.
open access

Chiral effective field theory predictions for muon capture on deuteron and $^3$He

Description: The muon-capture reactions {sup 2}H({mu}{sup -}, {nu}{sub {mu}})nn and {sup 3}He({mu}{sup -},{nu}{sub {mu}}){sup 3}H are studied with nuclear strong-interaction potentials and charge-changing weak currents, derived in chiral effective field theory. The low-energy constants (LEC's) c{sub D} and c{sub E}, present in the three-nucleon potential and (c{sub D}) axial-vector current, are constrained to reproduce the A=3 binding energies and the triton Gamow-Teller matrix element. The vector weak current is related to the isovector component of the electromagnetic current via the conserved-vector-current constraint, and the two LEC's entering the contact terms in the latter are constrained to reproduce the A=3 magnetic moments. The muon capture rates on deuteron and {sup 3}He are predicted to be 399 {+-} 3 sec{sup -1} and 1494 {+-} 21 sec{sup -1}, respectively, where the spread accounts for the cutoff sensitivity as well as uncertainties in the LEC's and electroweak radiative corrections. By comparing the calculated and precisely measured rates on {sup 3}He, a value for the induced pseudoscalar form factor is obtained in good agreement with the chiral perturbation theory prediction.
Date: January 1, 2012
Creator: Laura E. Marcucci, A. Kievsky, S. Rosati, R. Schiavilla, M. Viviani
open access

Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure)

Description: Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.
Date: January 1, 2012
open access

CO2-based mixtures as working fluids for geothermal turbines.

Description: Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for application to a variety of heat sources, including geothermal, solar, fossil, and nuclear power. This work is centered on the supercritical CO{sub 2} (S-CO{sub 2}) power conversion cycle, which has the potential for high efficiency in the temperature range of interest for these heat sources and is very compact-a feature likely to reduce capital costs. One promising approach is the use of CO{sub 2}-based supercritical fluid mixtures. The introduction of additives to CO{sub 2} alters the equation of state and the critical point of the resultant mixture. A series of tests was carried out using Sandia's supercritical fluid compression loop that confirmed the ability of different additives to increase or lower the critical point of CO{sub 2}. Testing also demonstrated that, above the modified critical point, these mixtures can be compressed in a turbocompressor as a single-phase homogenous mixture. Comparisons of experimental data to the National Institute of Standards and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties (REFPROP) Standard Reference Database predictions varied depending on the fluid. Although the pressure, density, and temperature (p, {rho}, T) data for all tested fluids matched fairly well to REFPROP in most regions, the critical temperature was often inaccurate. In these cases, outside literature was found to provide further insight and to qualitatively confirm the validity of experimental findings for the present investigation.
Date: January 1, 2012
Creator: Wright, Steven Alan; Conboy, Thomas M. & Ames, David E.
open access

CO2–brine–caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature

Description: Long term containment of stored CO2 in deep geological reservoirs will depend on the performance of the caprock to prevent the buoyant CO2 from escaping to shallow drinking water aquifers or the ground surface. Here we report new laboratory experiments on CO2-brine-caprock interactions and a review of the relevant literature. The Eau Claire Formation is the caprock overlying the Mount Simon sandstone formation, one of the target geological CO2 storage reservoirs in the Midwest USA region. Batch experiments of Eau Claire shale dissolution in brine were conducted at 200 C and 300 bars to test the extent of fluid-rock reactions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis indicate minor dissolution of K-feldspar and anhydrite, and precipitation of pore-filling and pore-bridging illite and/or smectite, and siderite in the vicinity of pyrite. We also reviewed relevant reactivity experiments, modeling work, and field observations in the literature in an attempt to help define the framework for future studies on the geochemical systems of the caprock overlain on geological CO2 storage formations. Reactivity of the caprock is generally shown to be low and limited to the vicinity of the CO2-caprock interface, and is related to the original caprock mineralogical and petrophysical properties. Stable isotope studies indicate that CO2 exists in both free phase and dissolved phase within the caprock. Carbonate and feldspar dissolution is reported in most studies, along with clay and secondary carbonate precipitation. Currently, research is mainly focused on the micro-fracture scale geochemistry of the shaly caprock. More attention is required on the potential pore scale reactions that may become significant given the long time scale associated with geological carbon storage
Date: January 1, 2012
Creator: Liua, Faye; Lua, Peng; Griffith, Craig; Hedges, Sheila W.; Soong, Yee; Hellevang, Helge et al.
open access

A comparison and benchmark of two electron cloud packages

Description: We present results from precision simulations of the electron cloud (EC) problem in the Fermilab Main Injector using two distinct codes. These two codes are (i)POSINST, a F90 2D+ code, and (ii)VORPAL, a 2D/3D electrostatic and electromagnetic code used for self-consistent simulations of plasma and particle beam problems. A specific benchmark has been designed to demonstrate the strengths of both codes that are relevant to the EC problem in the Main Injector. As differences between results obtained from these two codes were bigger than the anticipated model uncertainties, a set of changes to the POSINST code were implemented. These changes are documented in this note. This new version of POSINST now gives EC densities that agree with those predicted by VORPAL, within {approx}20%, in the beam region. The root cause of remaining differences are most likely due to differences in the electrostatic Poisson solvers. From a software engineering perspective, these two codes are very different. We comment on the pros and cons of both approaches. The design(s) for a new EC package are briefly discussed.
Date: January 1, 2012
Creator: Lebrun, Paul L.G.; Amundson, James F.; Spentzouris, Panagiotis G.; /Fermilab; Veitzer, Seth A. & /Tech-X, Boulder
Back to Top of Screen