UNT Libraries Government Documents Department - 371 Matching Results

Search Results

Airship model tests in the variable density wind tunnel

Description: This report presents the results of wind tunnel tests conducted to determine the aerodynamic characteristics of airship models. Eight Goodyear-Zeppelin airship models were tested in the original closed-throat tunnel. After the tunnel was rebuilt with an open throat a new model was tested, and one of the Goodyear-Zeppelin models was retested. The results indicate that much may be done to determine the drag of airships from evaluations of the pressure and skin-frictional drags on models tested at large Reynolds number.
Date: January 27, 1931
Creator: Abbott, Ira H

The drag of two streamline bodies as affected by protuberances and appendages

Description: This report presents the results of wind tunnel tests of two airship models conducted to determine the drag coefficients at zero pitch, and the effect of fins and cars and of flat and streamlined protuberances located at various positions along the hull. During the investigation the stern of one model was rounded off to produce a blunter shape. The extreme range of the Reynolds number based on the over-all length of the models was from 1,300,000 to 33,000,000. At large values of the Reynolds number the streamlined protuberance affected the drag very little, and the additional drag caused by the flat protuberance was less than the calculated drag by the protuberance alone. The fins and cars together increased the bare-hull drag about 20 per cent.
Date: January 1, 1934
Creator: Abbott, Ira H

Tests in the variable-density wind tunnel of the NACA 23012 airfoil with plain and split flaps

Description: Section characteristics for use in wing design are presented for the NACA 23012 airfoil with plain and split flaps of 20 percent wing chord at a value of the effective Reynolds number of about 8,000,000. The flap deflections covered a range from 60 degrees upward to 75 degrees downward for the plain flap and from neutral to 90 degrees downward for the split flap. The split flap was aerodynamically superior to the plain flap in producing high maximum lift coefficients and in having lower profile-drag coefficients at high lift coefficients.
Date: January 1, 1939
Creator: Abbott, Ira H & Greenberg, Harry

The pack method for compressive tests of thin specimens of materials used in thin-wall structures

Description: The strength of modern lightweight thin-wall structures is generally limited by the strength of the compression members. An adequate design of these members requires a knowledge of the compressive stress-strain graph of the thin-wall material. The "pack" method was developed at the National Bureau of Standards with the support of the National Advisory Committee for Aeronautics to make possible a determination of compressive stress-strain graphs for such material. In the pack test an odd number of specimens are assembled into a relatively stable pack, like a "pack of cards." Additional lateral stability is obtained from lateral supports between the external sheet faces of the pack and outside reactions. The tests seems adequate for many problems in structural research.
Date: January 1, 1939
Creator: Aitchison, C S & Tuckerman, L B

Calculation of the chordwise load distribution over airfoil sections with plain, split, or serially hinged trailing-edge flaps

Description: A method is presented for the rapid calculation of the incremental chordwise normal-force distribution over an airfoil section due to the deflection of a plain flap or tab, a split flap, or a serially hinged flap. This report is intended as a supplement to NACA Report no. 631, wherein a method is presented for the calculation of the chordwise normal-force distribution over an airfoil without a flap or, as it may be considered, an airfoil with flap (or flaps) neutral. The method enables the determination of the form and magnitude of the incremental normal-force distribution to be made for an airfoil-flap combination for which the section characteristics have been determined. A method is included for the calculation of the flap normal-force and hinge-moment coefficients without necessitating a determination of the normal-force distribution.
Date: January 1, 1938
Creator: Allen, H Julian

Determination of the characteristics of tapered wings

Description: This report presents tables and charts for use in determining the characteristics of tapered wings. Theoretical factors are given from which the following characteristics of tapered wings may be found: the span lift distribution, the induced-angle-of attack distribution, the lift-curve slope, the angle of zero lift, the induced drag, the aerodynamic-center position, and the pitching moment about the aerodynamic center.
Date: January 1, 1937
Creator: Anderson, Raymond F

The experimental and calculated characteristics of 22 tapered wings

Description: The experimental and calculated aerodynamic characteristics of 22 tapered wings are compared, using tests made in the variable-density wind tunnel. The wings had aspect ratios from 6 to 12 and taper ratios from 1:6:1 and 5:1. The compared characteristics are the pitching moment, the aerodynamic-center position, the lift-curve slope, the maximum lift coefficient, and the curves of drag. The method of obtaining the calculated values is based on the use of wing theory and experimentally determined airfoil section data. In general, the experimental and calculated characteristics are in sufficiently good agreement that the method may be applied to many problems of airplane design.
Date: January 1, 1938
Creator: Anderson, Raymond F

A study of the torque equilibrium of an autogiro rotor

Description: Two improvements have been made in the method developed in NACA Reports nos. 487 and 591 for the estimation of the inflow velocity required to overcome a given decelerating torque in an autogiro rotor. At low tip-speed ratios, where the assumptions necessary for the analytical integrations of the earlier papers are valid, the expressions therein derived are greatly simplified by combining and eliminating terms with a view of minimizing the numerical computations required. At high tip-speed ratios, by means of charts based on graphical integrations, errors inherent in the assumptions associated with the analytical method are largely eliminated. The suggested method of estimating the inflow velocity presupposes a knowledge of the decelerating torque acting on the rotor; all available full-scale experimental information on this subject is included.
Date: January 1, 1938
Creator: Bailey, F J , Jr

Spinning characteristics of the XN2Y-1 airplane obtained from the spinning balance and compared with results from the spinning tunnel and from flight tests

Description: Report presents the results of tests of a 1/10-scale model of the XN2Y-1 airplane tested in the NACA 5-foot vertical wind tunnel in which the six components of forces and moments were measured. The model was tested in 17 attitudes in which the full-scale airplane had been observed to spin, in order to determine the effects of scale, tunnel, and interference. In addition, a series of tests was made to cover the range of angles of attack, angles of sideslip, rates of rotation, and control setting likely to be encountered by a spinning airplane. The data were used to estimate the probable attitudes in steady spins of an airplane in flight and of a model in the free-spinning tunnel. The estimated attitudes of steady spin were compared with attitudes measured in flight and in the spinning tunnel. The results indicate that corrections for certain scale and tunnel effects are necessary to estimate full-scale spinning attitudes from model results.
Date: January 1, 1937
Creator: Bamber, M J & House, R O

The aerodynamic forces and moments exerted on a spinning model of the NY-1 airplane as measured by the spinning balance

Description: From Summary: "A preliminary investigation of the effects of changes in the elevator and rudder settings and of small changes in attitude upon the aerodynamic forces and moments exerted upon a spinning airplane was undertaken with the spinning balance in the 5-foot vertical tunnel of the National Advisory Committee for Aeronautics. The tests were made on a 1/12-scale model of the "NY-1" airplane. Data by which to fix the attitude, the radius of spin, and the rotational and air velocities were taken from recorded spins of the full-scale airplane."
Date: February 7, 1933
Creator: Bamber, M J & Zimmerm, N, C h

Spinning characteristics of wings I : rectangular Clark Y monoplane wing

Description: A series of wind tunnel tests of a rectangular Clark Y wing was made with the NACA spinning balance as part of a general program of research on airplane spinning. All six components of the aerodynamic force and moment were measured throughout the range of angles of attack, angles of sideslip, and values omega b/2v likely to be attained by a spinning airplane; the results were reduced to coefficient form. It is concluded that a conventional monoplane with a rectangular Clark y wing can be made to attain spinning equilibrium throughout a wide range of angles of attack but that provision of a yawing moment coefficient of -0.02 (against the spin) by the tail, fuselage, and interferences will insure against attainment of equilibrium in a steady spin.
Date: January 1, 1936
Creator: Bamber, M J & Zimmerman, C H

Wind-tunnel tests on airfoil boundary layer control using a backward-opening slot

Description: This report presents the results of an investigation to determine the effect of boundary layer control on the lift and drag of an airfoil. Boundary layer control was accomplished by means of a backward-opening slot in the upper surface of the hollow airfoil. Air was caused to flow through this slot by a pressure which was maintained inside the airfoil by a blower. Various slot locations, slot openings, and wing pressures were used. The tests were conducted in the 5-foot atmospheric wind tunnel of the Langley Memorial Aeronautical Laboratory. Under the test conditions, the maximum lift coefficient was increased about 96 per cent for one slot arrangement, and the minimum drag coefficient was decreased about 27 per cent for another, both being compared with the results obtained with the unslotted airfoil. It is believed from this investigation that the above effects may be increased by the use of larger slot openings, better slot locations, multiple slots, improved airfoil profiles, and trailing edge flaps.
Date: January 1, 1932
Creator: Bamber, Millard J

Aircraft speed instruments

Description: From Summary: "This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the Pitot-static air-speed meter which is the standard in the United States for airplanes. A bibliography on air-speed measurement concludes the report."
Date: January 1, 1933
Creator: Beij, K Hilding

Determination of the profile drag of an airplane wing in flight at high Reynolds numbers

Description: Flight tests were made to determine the profile-drag coefficients of a portion of the original wing surface of an all-metal airplane and of a portion of the wing made aerodynamically smooth and more nearly fair than the original section. The wing section was approximately the NACA 2414.5. The tests were carried out over a range of airplane speeds giving a maximum Reynolds number of 15,000,000. Tests were also carried out to locate the point of transition from laminar to turbulent boundary layer and to determine the velocity distribution along the upper surface of the wing. The profile-drag coefficients of the original and of the smooth wing portions at a Reynolds number of 15,000,000 were 0.0102 and 0.0068, respectively; i.e., the surface irregularities on the original wing increased the profile-drag coefficient 50 percent above that of the smooth wing.
Date: January 1, 1939
Creator: Bicknell, Joseph

Heat transfer from finned metal cylinders in an air stream

Description: This report presents the results of tests made to supply design information for the construction of metal fins for the cooling of heated cylindrical surfaces by an air stream. A method is given for determining fin dimensions for a maximum heat transfer with the expenditure of a given amount of material for a variety of conditions of air flow and metals.
Date: January 1, 1935
Creator: Biermann, Arnold, E & Pinkel, Benjamin

Tests of two full-scale propellers with different pitch distributions, at blade angles up to 60 degrees

Description: Two 3-blade 10-foot propellers were operated in front of a liquid-cooled engine nacelle. The propellers differed only in pitch distribution; one had normal distribution (nearly constant pitch for a blade angle of 15 degrees at 0.75 radius), and the other had the pitch of the tip sections decreased with respect to that for the shank sections (blade angle of 35 degrees for nearly constant pitch distribution). Propeller blade angles at 0.75r from 15 degrees to sixty degrees, corresponding to design speeds up to 500 miles per hour, were investigated. Propeller blade angles at 0.75r from 15 degrees to 60 degrees, corresponding to design speeds up to 500 miles per hour, were investigated. The results indicated that the propulsive efficiency at a blade angle of 60 degrees was about 9 percent less than the maximum value of 86 percent, which occurred at blade angle of about 30 degrees. The efficiency at a blade angle of 60 degrees was increased about 7 percent by correcting for the effect of a spinner and, at a blade angle of 30 degrees about 3 percent. The peak efficiencies for the propeller having the washed-out pitch distribution were slightly less than for the normal propeller but the take-off efficiency was generally higher.
Date: January 1, 1939
Creator: Biermann, David & HARTMAN EDWIN P

The aerodynamic characteristics of six full-scale propellers having different airfoil sections

Description: From Summary: "Wind-tunnel tests are reported of six 3-blade 10-foot propellers operated in front of a liquid-cooled engine nacelle. The propellers were identical except for blade airfoil sections, which were: Clark y, R.A.F. 6, NACA 4400, NACA 2400-34, NACA 2rsub200, and NACA 6400. The range of blade angles investigated extended for 15 degrees to 40 degrees for all propellers except the Clark y, for which it extended to 45 degrees. The results showed that the range in maximum efficiency between the highest and lowest values was about 3 percent. The highest efficiencies were for the low-camber sections."
Date: 1939
Creator: Biermann, David & Hartman, Edwin P

The effect of compressibility on eight full-scale propellers operating in the take-off and climbing range

Description: Tests were made of eight full-scale propellers of different shape at various tip speeds up to about 1,000 feet per second. The range of blade-angle settings investigated was from 10 degrees to 30 degrees at the 0.75 radius. The results indicate that a loss in propulsive efficiency occurred at tip speeds from 0.5 to 0.7 the velocity of sound for the take-off and climbing conditions. As the tip speed increased beyond these critical values, the loss rapidly increased and amounted, in some instances, to more than 20 percent of the thrust power for tip-speed values of 0.8 the speed of sound. In general, as the blade-angle setting was increased, the loss started to occur at lower tip speeds. The maximum loss for a given tip speed occurred at a blade-angle setting of about 20 degrees for the take-off and 25 degrees for the climbing condition. A simplified method for correcting propellers for the effect of compressibility is given in an appendix.
Date: January 1, 1938
Creator: Biermann, David & Hartman, Edwin P

Tests of five full-scale propellers in the presence of a radial and a liquid-cooled engine nacelle, including tests of two spinners

Description: Wind-tunnel tests are reported of five 3-blade 10-foot propellers operating in front of a radial and a liquid-cooled engine nacelle. The range of blade angles investigated extended from 15 degrees to 45 degrees. Two spinners were tested in conjunction with the liquid-cooled engine nacelle. Comparisons are made between propellers having different blade-shank shapes, blades of different thickness, and different airfoil sections. The results show that propellers operating in front of the liquid-cooled engine nacelle had higher take-off efficiencies than when operating in front of the radial engine nacelle; the peak efficiency was higher only when spinners were employed. One spinner increased the propulsive efficiency of the liquid-cooled unit 6 percent for the highest blade-angle setting investigated and less for lower blade angles. The propeller having airfoil sections extending into the hub was superior to one having round blade shanks. The thick propeller having a Clark y section had a higher take-off efficiency than the thinner one, but its maximum efficiency was possibly lower. Of the three blade sections tested, Clark y, R.A.F. 6, and NACA 2400-34, the Clark y was superior for the high-speed condition, but the R.A.F. 6 excelled for the take-off condition.
Date: January 1, 1938
Creator: Biermann, David & Hartman, Edwin P

The drag of airplane wheels, wheel fairings, and landing gears II : nonretractable and partly retractable landing gears

Description: This is the second report giving the results obtained in the NACA 20-foot wind tunnel on the drag due to landing gears. The present report gives the results of tests of nonretractable and partly retractable landing gears intended for heavier low-wing monoplanes of the transport and bomber type.
Date: January 1, 1936
Creator: Biermann, David & Herrnstein, William H , Jr

The interference between struts in various combinations

Description: This report presents the results of wind tunnel tests made to determine the interference drag arising from various arrangements of streamline struts and round struts, or cylinders. Determinations were made of the interference drag of struts spaced side by side, struts in tandem, tandem struts encased in a single fairing, a strut intersecting a plane, and struts intersecting to form a v. Three sizes of struts were used for most of the tests. These tests show that the interference drag arising from struts in close proximity may be of considerable magnitude, in some instances amounting to more than the drag of the struts themselves.
Date: January 1, 1934
Creator: Biermann, David & Herrnstein, William H , Jr

Cooling on the front of an air-cooled engine cylinder in a conventional engine cowling

Description: Measurements were made of the cooling on the fronts of model cylinders in a conventional cowling for cooling in both the ground and the cruising conditions. The mechanisms of front and rear cooling are essentially different. Cooling on the rear baffled part of the cylinders continually increases with increasing fin width. For the front of the cylinder, an optimum fin width was found to exist beyond which an increase in width reduced the heat transfer. The heat transfer coefficient on the front of the cylinders was larger on the side of the cylinder facing the propeller swirl than on the opposite side. This effect became more pronounced as the fin width was increased. These results are introductory to the study of front cooling and show the general effect of several test parameters.
Date: January 1, 1939
Creator: Brevoort, M J & Joyner, U T

Experimental investigation of the Robinson-type cup anemometer

Description: This report presents the results of wind tunnel tests on a Robinson-type anemometer. The investigation covered force measurements on individual cups, as well as static and dynamic torque measurements and calibrations on complete cup wheels. In the tests on individual cups 5 cup forms were used and in the measurements on complete cup wheels 4 cup wheels with 3 arm lengths for each cup wheel were tested. All the results are presented in graphical form.
Date: January 1, 1936
Creator: Brevoort, M J & Joyner, U T