UNT Libraries Government Documents Department - 1,261 Matching Results

Search Results

The drag of two streamline bodies as affected by protuberances and appendages

Description: This report presents the results of wind tunnel tests of two airship models conducted to determine the drag coefficients at zero pitch, and the effect of fins and cars and of flat and streamlined protuberances located at various positions along the hull. During the investigation the stern of one model was rounded off to produce a blunter shape. The extreme range of the Reynolds number based on the over-all length of the models was from 1,300,000 to 33,000,000. At large values of the Reynolds number the streamlined protuberance affected the drag very little, and the additional drag caused by the flat protuberance was less than the calculated drag by the protuberance alone. The fins and cars together increased the bare-hull drag about 20 per cent.
Date: January 1, 1934
Creator: Abbott, Ira H

Tests in the variable-density wind tunnel of the NACA 23012 airfoil with plain and split flaps

Description: Section characteristics for use in wing design are presented for the NACA 23012 airfoil with plain and split flaps of 20 percent wing chord at a value of the effective Reynolds number of about 8,000,000. The flap deflections covered a range from 60 degrees upward to 75 degrees downward for the plain flap and from neutral to 90 degrees downward for the split flap. The split flap was aerodynamically superior to the plain flap in producing high maximum lift coefficients and in having lower profile-drag coefficients at high lift coefficients.
Date: January 1, 1939
Creator: Abbott, Ira H & Greenberg, Harry

Summary of Airfoil Data

Description: The historical development of NACA airfoils is briefly reviewed. New data are presented that permit the rapid calculation of the approximate pressure distributions for the older NACA four-digit and five-digit airfoils by the same methods used for the NACA 6-series airfoils. The general methods used to derive the basic thickness forms for NACA 6 and 7-series airfoils together with their corresponding pressure distributions are presented. Detail data necessary for the application of the airfoils to wing design are presented in supplementary figures placed at the end of the paper. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed, together with aerodynamic problems of application. (author).
Date: January 1, 1945
Creator: Abbott, Ira H; Von Doenhoff, Albert E & Stivers, Louis, Jr

Theoretical damping in roll and rolling moment due to differential wing incidence for slender cruciform wings and wing-body combinations

Description: A method of analysis based on slender-wing theory is developed to investigate the characteristics in roll of slender cruciform wings and wing-body combinations. The method makes use of the conformal mapping processes of classical hydrodynamics which transform the region outside a circle and the region outside an arbitrary arrangement of line segments intersecting at the origin. The method of analysis may be utilized to solve other slender cruciform wing-body problems involving arbitrarily assigned boundary conditions. (author).
Date: January 1, 1952
Creator: Adams, Gaynor J & DUGAN DUANE W

Investigation of downwash, sidewash, and Mach number distribution behind a rectangular wing at a Mach number of 2.41

Description: An investigation of the nature of the flow field behind a rectangular wing of circular arc cross section has been conducted in the Langley 9-inch supersonic tunnel. Pitot- and static-pressure surveys covering a region of flow behind the wing have been made together with detailed pitot surveys throughout the region of the wake. In addition, the flow direction has been measured by means of a weathercocking vane. Theoretical calculations have been made to obtain the variation of both downwash and sidewash with angle of attack by using the superposition method of Lagerstrom, Graham, and Grosslight. In addition, the effect of wing thickness on the sidewash with the wing at 0 degree angle of attack has been evaluated.
Date: January 1, 1957
Creator: Adamson, David & Boatright, William B

Standard nomenclature for airspeeds with tables and charts for use in calculation of airspeed

Description: Symbols and definition of various airspeed terms that have been adopted as standard by the NACA subcommittee on aircraft structural design are presented. The equations, charts, and tables required in the evaluation of true airspeed, calibrated airspeed, equivalent airspeed, impact and dynamic pressures, and Mach and Reynolds numbers have been compiled. Tables of the standard atmosphere to an altitude of 65,000 feet and a tentative extension to an altitude of 100,000 feet are given along with the basic equations and constants on which both the standard atmosphere and the tentative extension are based.
Date: January 1, 1946
Creator: Aiken, William S , Jr

The pack method for compressive tests of thin specimens of materials used in thin-wall structures

Description: The strength of modern lightweight thin-wall structures is generally limited by the strength of the compression members. An adequate design of these members requires a knowledge of the compressive stress-strain graph of the thin-wall material. The "pack" method was developed at the National Bureau of Standards with the support of the National Advisory Committee for Aeronautics to make possible a determination of compressive stress-strain graphs for such material. In the pack test an odd number of specimens are assembled into a relatively stable pack, like a "pack of cards." Additional lateral stability is obtained from lateral supports between the external sheet faces of the pack and outside reactions. The tests seems adequate for many problems in structural research.
Date: January 1, 1939
Creator: Aitchison, C S & Tuckerman, L B

Theoretical and experimental investigation of the subsonic-flow fields beneath swept and unswept wings with tables or vortex-induced velocities

Description: The flow-field characteristics beneath swept and unswept wings as determined by potential-flow theory are compared with the experimentally determined flow fields beneath swept and unswept wing-fuselage combinations. The potential-flow theory utilized considered both spanwise and chordwise distributions of vorticity as well as the wing-thickness effects. The perturbation velocities induced by a unit horseshoe vortex are included in tabular form. The theoretical predictions of the flow-field characteristics were qualitatively correct in all cases considered, although there were indications that the magnitudes of the downwash angles tended to be overpredicted as the tip of the swept wing was approached and that the sidewash angles ahead of the unswept wing were underpredicted. The calculated effects of compressibility indicated that significant increases in the chordwise variation of flow angles and dynamic-pressure ratios should be expected in going from low to high subsonic speeds.
Date: January 1, 1957
Creator: Alford, William J , Jr

Determination of vortex paths by series expansion technique with application to cruciform wings

Description: A series method of determining two-dimensional vortex paths is considered and applied to the computation of vortex positions behind a slender equal-span cruciform wing at any angle of bank as a function of the distance behind the trailing edge. Calculated paths are shown for four bank angles. For a bank angle of 45 degrees comparison is made with the results of a closed expression given in NACA-TN-2605. For other bank angles water-tank experiments provide qualitative comparison. Satisfactory agreement is found for a sufficient distance downstream to include most practical missile-tail positions. The interference forces on an equal-span cruciform wing are calculated for five angles of bank (including the trivial case of zero bank) from the vortex positions found by use of the series.
Date: January 1, 1957
Creator: Alksne, Alberta Y

Calculation of the chordwise load distribution over airfoil sections with plain, split, or serially hinged trailing-edge flaps

Description: A method is presented for the rapid calculation of the incremental chordwise normal-force distribution over an airfoil section due to the deflection of a plain flap or tab, a split flap, or a serially hinged flap. This report is intended as a supplement to NACA Report no. 631, wherein a method is presented for the calculation of the chordwise normal-force distribution over an airfoil without a flap or, as it may be considered, an airfoil with flap (or flaps) neutral. The method enables the determination of the form and magnitude of the incremental normal-force distribution to be made for an airfoil-flap combination for which the section characteristics have been determined. A method is included for the calculation of the flap normal-force and hinge-moment coefficients without necessitating a determination of the normal-force distribution.
Date: January 1, 1938
Creator: Allen, H Julian

General theory of airfoil sections having arbitrary shape or pressure distribution

Description: In this report a theory of thin airfoils of small camber is developed which permits either the velocity distribution corresponding to a given airfoil shape, or the airfoil shape corresponding to a given velocity distribution to be calculated. The procedures to be employed in these calculations are outlined and illustrated with suitable examples.
Date: January 1, 1945
Creator: Allen, H Julian

A study of the motion and aerodynamic heating of ballistic missiles entering the earth's atmosphere at high supersonic speeds

Description: A simplified analysis of the velocity and deceleration history of ballistic missiles entering the earth's atmosphere at high supersonic speeds is presented. The results of this motion analysis are employed to indicate means available to the designer for minimizing aerodynamic heating. The heating problem considered involves not only the total heat transferred to a missile by convection, but also the maximum average and local time rates of convective heat transfer.
Date: January 1, 1958
Creator: Allen, H Julian & Eggers, A J , Jr

A method for calculating heat transfer in the laminar flow region of bodies

Description: This report has been prepared to provide a practical method for determining the chordwise distribution of the rate of heat transfer from the surface of a wing or body of revolution to air. The method is limited in use to the determination of heat transfer from the forward section of such bodies when the flow is laminar. A comparison of the calculated average heat-transfer coefficient for the nose section of the wing of a Lockheed 12-A airplane with that experimentally determined shows a satisfactory agreement. A sample calculation is appended.
Date: January 1, 1943
Creator: Allen, H Julian & Look, Bonne C

A study of effects of viscosity on flow over slender inclined bodies of revolution

Description: The observed flow field about slender inclined bodies of revolution is compared with the calculated characteristics based upon potential theory. The comparison is instructive in indicating the manner in which the effects of viscosity are manifest. Based on this and other studies, a method is developed to allow for viscous effects on the force and moment characteristics of bodies. The calculated force and moment characteristics of two bodies of high fineness ratio are shown to be in good agreement, for most engineering purposes, with experiment. (author).
Date: January 1, 1951
Creator: Allen, H Julian & Perkins, Edward W

Wall interference in a two-dimensional-flow wind tunnel, with consideration of the effect of compressibility

Description: Theoretical tunnel-wall corrections are derived for an airfoil of finite thickness and camber in a two-dimensional-flow wind tunnel. The theory takes account of the effects of the wake of the airfoil and of the compressibility of the fluid, and is based upon the assumption that the chord of the airfoil is small in comparison with the height of the tunnel. Consideration is given to the phenomenon of choking at high speeds and its relation to the tunnel-wall corrections. The theoretical results are compared with the small amount of low-speed experimental data available and the agreement is seen to be satisfactory, even for relatively large values of the chord-height ratio.
Date: January 1, 1944
Creator: Allen, H Julian & Vincenti, Walter G

Glues used in airplane parts

Description: This report was prepared for the National Advisory Committee for Aeronautics and presents the results of investigations conducted by the Forest Products Laboratory of the United States Forest Service on the manufacture, preparation, application, testing and physical properties of the different types of glues used in wood airplane parts.
Date: January 1, 1920
Creator: Allen, S W & Truax, T R

Method for studying helicopter longitudinal maneuver stability

Description: A theoretical analysis of helicopter maneuver stability is made and the results are compared with experimental results for both a single and a tandem rotor helicopter. Techniques are described for measuring in flight the significant stability derivatives for use with the theory to aid in design studies of means for achieving marginal maneuver stability for a prototype helicopter.
Date: January 1, 1954
Creator: Amer, Kenneth B

Charts for estimating tail-rotor contribution to helicopter directional stability and control in low-speed flight

Description: Theoretically derived charts and equations are presented by which tail-rotor design studies of directional trim and control response at low forward speed can be conveniently made. The charts can also be used to obtain the main-rotor stability derivatives of thrust with respect to collective pitch and angle of attack at low forward speeds. The use of the charts and equations for tail-rotor design studies is illustrated. Comparisons between theoretical and experimental results are presented. The charts indicate, and flight tests confirm, that the region of vortex roughness which is familiar for the main rotor is also encountered by the tail rotor and that prolonged operation at the corresponding flight conditions would be difficult.
Date: January 1, 1955
Creator: Amer, Kenneth B & Gessow, Alfred

Studies of the lateral-directional flying qualities of a tandem helicopter in forward flight

Description: An investigation of the lateral-directional flying qualities of a tandem-rotor helicopter in forward flight was undertaken to determine desirable goals for helicopter lateral-directional flying qualities and possible methods of achieving these goals in the tandem-rotor helicopter. Comparison between directional stability as measured in flight and rotor-off model tests in a wind tunnel shows qualitative agreement and, hence, indicates such wind-tunnel test, despite the absence of the rotors, to be one effective method of studying means of improving the directional stability of the tandem helicopter. Flight-test measurements of turns and oscillations, in conjunction with analytical studies, suggest possible practical methods of achieving the goals of satisfactory turn and oscillatory characteristics in the tandem helicopter.
Date: January 1, 1954
Creator: Amer, Kenneth B & Tapscott, Robert J

A resume of the advances in theoretical aeronautics made by Max M. Munk

Description: In order to apply profitably the mathematical methods of hydrodynamics to aeronautical problems, it is necessary to make simplifications in the physical conditions of the latter. To begin with, it is allowable in many problems, as Prandtl has so successfully shown, to treat the air as having constant density and as free of viscosity. But this is not sufficient. It is also necessary to specify certain shapes for the solid bodies whose motion through the air is discussed, shapes suggested by the actual solids - airships or airfoils - it is true, but so chosen that they lead to solvable problems. In a valuable paper presented by Dr. Max M. Munk, of the National Advisory Committee for Aeronautics, Washington, to the Delft Conference in April, 1924, these necessary simplifying assumptions are discussed in detail. It is the purpose of the present paper to present in as simple a manner as possible some of the interesting results obtained by Dr. Munk's methods.
Date: January 1, 1926
Creator: Ames, Joseph S

Determination of control-surface characteristics from NACA plain-flap and tab data

Description: The data from previous NACA pressure-distribution investigations of plain flaps and tabs with sealed gaps have been analyzed and are presented in this paper in a form readily applicable to the problems of control-surface design. The experimentally determined variation of aerodynamic parameters with flap chord and tab chord are given in chart form and comparisons are made with the theory. With the aid of these charts and the theoretical relationships for a thin airfoil, the aerodynamic characteristics for control surfaces of any plan form with plain flaps and tabs with sealed gaps may be determined. A discussion of the basic equations of the thin-airfoil theory and the development of a number of additional equations that will be helpful in tail design are presented in the appendixes. The procedure for applying the data is described and a sample problem of horizontal tail design is included. The data presented and the method of application set forth in this report should provide a reasonably accurate and satisfactory means of computing the aerodynamic characteristics of control surfaces.
Date: January 1, 1941
Creator: Ames, Milton B & Sears, Richard I

Determination of the characteristics of tapered wings

Description: This report presents tables and charts for use in determining the characteristics of tapered wings. Theoretical factors are given from which the following characteristics of tapered wings may be found: the span lift distribution, the induced-angle-of attack distribution, the lift-curve slope, the angle of zero lift, the induced drag, the aerodynamic-center position, and the pitching moment about the aerodynamic center.
Date: January 1, 1937
Creator: Anderson, Raymond F

The experimental and calculated characteristics of 22 tapered wings

Description: The experimental and calculated aerodynamic characteristics of 22 tapered wings are compared, using tests made in the variable-density wind tunnel. The wings had aspect ratios from 6 to 12 and taper ratios from 1:6:1 and 5:1. The compared characteristics are the pitching moment, the aerodynamic-center position, the lift-curve slope, the maximum lift coefficient, and the curves of drag. The method of obtaining the calculated values is based on the use of wing theory and experimentally determined airfoil section data. In general, the experimental and calculated characteristics are in sufficiently good agreement that the method may be applied to many problems of airplane design.
Date: January 1, 1938
Creator: Anderson, Raymond F

Charts relating the compressive buckling stress of longitudinally supported plates to the effective deflectional and rotational stiffness of the supports

Description: A stability analysis is made of a long flat rectangular plate subjected to a uniform longitudinal compressive stress and supported along its longitudinal edges and along one or more longitudinal lines by elastic line supports. The elastic supports possess deflectional and rotational stiffness. Such configuration is an idealization of the compression cover skin and internal structure of a wing and tail surfaces. The results of the analysis are presented in the form of charts in which the buckling-stress coefficient is plotted against the buckle length of the plate for a wide range of support stiffnesses. The charts make possible the determination of the compressive buckling stress of plates supported by members whose stiffness may or may not be defined by elementary beam bending and twisting theory but yet whose effective restraint is amenable to evaluation. The deflectional and rotational stiffness provided by longitudinal stiffeners and full-depth webs is discussed and numerical examples are given to illustrate the application of the charts to the design of wing structures.
Date: January 1, 1954
Creator: Anderson, Roger A & Semonian, Joseph W