Search Results

The Aerodynamic Forces and Moments Exerted on a Spinning Model of the NY-1 Airplane as Measured by the Spinning Balance
From Summary: "A preliminary investigation of the effects of changes in the elevator and rudder settings and of small changes in attitude upon the aerodynamic forces and moments exerted upon a spinning airplane was undertaken with the spinning balance in the 5-foot vertical tunnel of the National Advisory Committee for Aeronautics. The tests were made on a 1/12-scale model of the "NY-1" airplane. Data by which to fix the attitude, the radius of spin, and the rotational and air velocities were taken from recorded spins of the full-scale airplane."
Air flow around finned cylinders
Report presents the results of a study made to determine the air-flow characteristics around finned cylinders. Air-flow distribution is given for a smooth cylinder, for a finned cylinder having several fin spacings and fin widths, and for a cylinder with several types of baffle with various entrance and exit shapes. The results of these tests show: that flow characteristics around a cylinder are not so critical to changes in fin width as they are to fin spacing; that the entrance of the baffle has a marked influence on its efficiency; that properly designed baffles increase the air flow over the rear of the cylinder; and that these tests check those of heat-transfer tests in the choice of the best baffle.
Drop and Flight Tests on NY-2 Landing Gears Including Measurements of Vertical Velocities at Landing
This investigation was conducted to obtain quantitative information on the effectiveness of three landing gears for the NY-2 (consolidated training) airplane. The investigation consisted of static, drop, and flight tests on landing gears of the oleo-rubber-disk and the mercury rubber-chord types, and flight tests only on a landing gear of the conventional split-axle rubber-cord type. The results show that the oleo gear is the most effective of the three landing gears in minimizing impact forces and in dissipating the energy taken.
Flight Investigation of Lateral Control Devices for Use With Full-Span Flaps
This report presents the results of flight tests made on five different lateral control devices that appeared adaptable to wings fitted with full span flaps: controllable auxiliary airfoils (airfoils mounted above and forward of the leading edge of the wings), external ailerons (airfoils mounted above the wing and slightly forward of its maximum ordinate), upper-surface ailerons (similar to split trailing-edge flaps except that they constitute the upper surface of the wing), ailerons that retract into the wing when in neutral, and narrow-chord conventional ailerons in combination with a special type of split flap that retracts into the under surface of the wing forward of the ailerons.
Interrelation of Exhaust-Gas Constituents
This report presents the results of an investigation conducted to determine the interrelation of the constituents of the exhaust gases of internal-combustion engines and the effect of engine performance on these relations. Six single-cylinder, liquid-cooled tests engines and one 9-cylinder radial air-cooled engine were tested. Various types of combustion chambers were used and the engines were operated at compression ratios from 5.1 to 7.0 using spark ignition and from 13.5 to 15.6 using compression ignition. The investigation covered a range of engine speeds from 1,500 to 2,100 r.p.m.
A method of flight measurement of spins
A method is described involving the use of recording turn meters and accelerometers and a sensitive altimeter, by means of which all of the physical quantities necessary for the complete determination of the flight path, motion, attitude, forces, and couples of a fully developed spin can be obtained in flight. Data are given for several spins of two training type airplanes which indicate that the accuracy of the results obtained with the method is satisfactory.
Prechamber compression-ignition engine performance
Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.
Temperature coefficient of the modulus of rigidity of aircraft instrument diaphragm and spring materials
Experimental data are presented on the variation of the modulus of rigidity in the temperature range -20 to +50 degrees C. of a number of metals which are of possible use for elastic elements for aircraft and other instruments. The methods of the torsional pendulum was used to determine the modulus of rigidity and its temperature coefficient for aluminum, duralumin, monel metal, brass, phosphor bronze, coin silver, nickel silver, three high carbon steels, and three alloy steels. It was observed that tensile stress affected the values of the modulus by amounts of 1 per cent or less.
Tests in the variable-density wind tunnel of related airfoils having the maximum camber unusually far forward
A family of related airfoils having the position of maximum camber unusually far forward was investigated in the variable-density tunnel as an extension of the study recently completed of a large number of related airfoils. The new airfoils gave improved characteristics over those previously investigated, especially in regard to the pitching moment. Some of the new sections are markedly superior to well-known and commonly used sections and should replace them in applications requiring a slightly cambered section of moderate thickness having a small pitching-moment coefficient.
Tests of nacelle-propeller combinations in various positions with reference to wings 6: wings and nacelles with pusher propeller
This report is the sixth of a series giving wind tunnel tests results on the interference drag and propulsive efficiency of nacelle-propeller-wing combinations. The present report gives the results of tests of a radial-engine nacelle with pusher propeller in 17 positions with reference to a Clark Y wing; tests of the same nacelle and propeller in three positions with reference to a thick wing; and tests of a body and pusher propeller with the thick wing, simulating the case of a propeller driven by an extension shaft from an engine within the wing. Some preliminary tests were made on pusher nacelles alone.
Back to Top of Screen