Search Results

Physical Parameters in Synthoil Process, Quarterly Report: January-March 1976
This work is being done in support of the development of processes for converting coal to liquid fuel of low sulfur content, suitable for use in power production. Most of the effort is intended to produce information applicable to the SYNTHOIL Process. In the SYNTHOIL Process for converting coal to a low-sulfur fuel oil, coal is liquefied and hydro-desulfurized in a turbulent-flow, catalytic packed-bed reactor. A slurry of coal in recycled oil is reacted with hydrogen at 450 degrees C and 2,000 to 4,000 psi in the presence of Co-MoSiO2-Al2O3 catalyst. The turbulent flow of fluid prevents the coal's mineral matter from settling and plugging the reactor. The gross liquid products are centrifuged to remove the unreacted solids. The centrifuged liquid product is a low-S, low-ash fuel. The following four tasks are included: (1) heat of reaction of hydrogen with coal slurries; (2) heat transfer coefficient; (3) additives to facilitate separation of solids from liquids; and (4) catalyst testing. These are now in the planning stage of development.
Physical Parameters in Synthoil Process, Quarterly Report: October-December 1975
This work is being done in support of the development of processes for converting coal to liquid fuel of low sulfur content, suitable for use in power production. Most of the effort is intended to produce information applicable to the SYNTHOIL Process. In the SYNTHOIL Process for converting coal to a low-sulfur fuel oil, coal is liquefied and hydro-desulfurized in a turbulent-flow, catalytic packed-bed reactor. A slurry of coal in recycled oil is reacted with hydrogen at 450 degrees C and 2,000 to 4,000 psi in the presence of Co-MoSiO2-Al2O3 catalyst. The turbulent flow of fluid prevents the coal's mineral matter from settling and plugging the reactor. The gross liquid products are centrifuged to remove the unreacted solids. The centrifuged liquid product is a low-S, low-ash fuel. The following four tasks are included: (1) heat of reaction of hydrogen with coal slurries; (2) heat transfer coefficient; (3) additives to facilitate separation of solids from liquids; and (4) catalyst testing. These are now in the planning stage of development.
Back to Top of Screen