Search Results

Boiling Heat Transfer of Refrigerant R-113 in a Small-Diameter, Horizontal Tube
Results of a study of boiling heat transfer from refrigerant R-113 in a small-diameter (2.92-mm) tube are reported. Local heat transfer coefficients over a range of heat fluxes, mass fluxes, and equilibrium mass qualities were measured. The measured coefficients were used to evaluate eight different heat transfer correlations, some of which have been developed specifically for refrigerants. High heat fluxes and low flow rates are inherent in small channels, and this combination results in high boiling numbers. The high boiling number of the collected data shows that the nucleation mechanism was dominant. As a result, the two-phase correlations that predicted this dominance also predicted the data best if they also properly modeled the physical parameters. The correlations of Lazarek and Black and of Shah, as modified in this study, predicted the data very well. It is also shown that a simple form, suggested by Stephan and Abdelsalam for nucleate boiling, correlates the data equally well. This study is part of a research program in multiphase flow and heat transfer, with the overall objective of developing validated design correlations and predictive methods that will facilitate the design and optimization of compact heat exchangers for use with environmentally acceptable alternatives for chlorofluorocarbon (CFC) refrigerants and refrigerant mixtures.
An Integrated Database to Support Research on Escherichia Coli
We have used logic programming to design and implement a prototype database of genomic information for the model bacterial organism Escherichia coli. This report presents the fundamental database primitives that can be used to access and manipulate data relating to the E. coli genome. The present system, combined with a tutorial manual, provides immediate access to the integrated knowledge base for E. coli chromosome data. It also serves as the foundation for development of more user-friendly interfaces that have the same retrieval power and high-level tools to analyze complex chromosome organization.
Nuclear Technology Programs Semiannual Progress Report: October 1989-March 1990
Progress report of the Argonne National Laboratory's Nuclear Technology Programs involving R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management.
Sodium Heat Engine Development Program
The Sodium Heat Engine (SHE) is an efficient thermoelectric conversion device which directly generates electricity from a thermally regenerative electrochemical cell that relies on the unique conduction properties of {beta}{double prime}-alumina solid electrolyte (BASE). Laboratory models of a variety of SHE devices have demonstrated the feasibility and efficiency of the system, engineering development of large prototype devices has been slowed by a series of materials and fabrication problems. Failure of the electrolyte tubes has been a recurring problem and a number of possible causes have been postulated. To address these issues, a two-phase engineering development program was undertaken. This report summarizes the final results of the first phase of the program, which included extensive materials characterization activities, a study of applicable nondestructive evaluation methods, an investigation of possible stress states that would contribute to fracture, and certain operational issues associated with the electromagnetic pumps used in the SHE prototype.
Chaotic Vibrations of Nonlinearly Supported Tubes in Crossflow
By means of the unsteady-flow theory and a bilinear mathematical model, a theoretical study is presented for chaotic vibrations associated with the fluid-elastic instability of nonlinearly supported tubes in a crossflow. Effective tools, including phase portraits, power spectral density, Poincare maps, Lyapunov exponent, fractal dimension, and bifurcation diagrams, are utilized to distinguish periodic and chaotic motions when the tubes vibrate in the instability region. The results show periodic and chaotic motions in the region corresponding to fluid-damping-controlled instability. Nonlinear supports, with symmetric or asymmetric gaps, significantly affect the distribution of periodic, quasi-periodic, and chaotic motions of a tube exposed to various flow velocities in the instability region of the tube-support-plate-inactive mode.
ANL Technical Support Program for DOE Environmental Restoration and Waste Management Annual Report October 1990 - September 1991
A program has been established for DOE Environmental Restoration and Waste Management (EM) to evaluate factors that are likely to affect waste glass reaction during repository disposal, with emphasis on an unsaturated environment typical of what may be expected for the proposed Yucca Mountain repository site.
Chemical Technology Division Annual Technical Report: 1991
Annual report of the Argonne National Laboratory Chemical Technology Division (CMT) discussing the group's activities during 1991. These included electrochemical technology; fossil fuel research; hazardous waste research; nuclear waste programs; separation science and technology; integral fast reactor pyrochemical processes; actinite recovery; applied physical chemistry; basic chemistry research; analytical chemistry; research and development; and computer applications.
Detection and Location of Leaks in District Heating Steam Systems: Survey and Review of Current Technology and Practices
This report presents the results of a survey undertaken to identify and characterize current practices for detecting and locating leaks in district heating systems, particular steam systems. Currently used technology and practices are reviewed. In addition, the survey was used to gather information that may be important for the application of acoustic leak detection. A few examples of attempts to locate leaks in steam and hot water pipes by correlation of acoustic signals generated by the leaks are also discussed.
The Monitoring and Control of TRUEX Processes
The Generic TRUEX Model (GTM) was used to design a flowsheet for the TRUEX solvent extraction process that would be used to determine its instrumentation and control requirements. Sensitivity analyses of the key process variables, namely, the aqueous and organic flow rates, feed compositions, and the number of contactor stages, were carried out to assess their impact on the operation of the TRUEX process. Results of these analyses provide a basis for the selection of an instrument and control system and the eventual implementation of a control algorithm. Volume Two of this report is an evaluation of the instruments available for measuring many of the physical parameters. Equations that model the dynamic behavior of the TRUEX process have been generated. These equations can be used to describe the transient or dynamic behavior of the process for a given flowsheet in accordance with the TRUEX model. Further work will be done with the dynamic model to determine how and how quickly the system responds to various perturbations. The use of perturbation analysis early in the design stage will lead to a robust flowsheet, namely, one that will meet all process goals and allow for wide control bounds. The process time delay, that is, the speed with which the system reaches a new steady state, is an important parameter in monitoring and controlling a process. In the future, instrument selection and point-of-variable measurement, now done using the steady-state results reported here, will be reviewed and modified as necessary based on this dynamic method of analysis.
Vehicle/Guideway Interaction in Maglev Systems
Dynamic interactions between the vehicle and guideway in a high-speed ground transportation system based on magnetically levitated (maglev) vehicles were studied, with an emphasis on the effects of vehicle and guideway parameters. Two dynamic models for the vehicle are presented. In one model, the vehicle is considered to be a moving force traveling at various speeds on a simply supported single- or two-span beam. In the second model, the vehicle is considered to be one-dimensional and has two degrees of freedom; this model consists of the primary and secondary suspensions of the vehicle, with lumped masses, linear springs, and dampings. The Bernoulli-Euler beam equation is used to model the characteristics of a flexible guideway, and the guideway synthesis is based on modal analysis. Analyses were performed to gain an understanding of response characteristics under various loading conditions and to provide benchmark data for verification of existing comprehensive computer programs and some basic design guidelines for maglev systems. Finally, the German Transrapid maglev system was evaluated.
Dynamic Stability of Maglev Systems
Because dynamic instability is not acceptable for any commercial maglev systems, it is important to consider this phenomenon in the development of all maglev systems. This study considers the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments attached to a rotating wheel. The theory and analysis developed in this study identifies basic stability characteristics and future research needs of maglev systems.
A Formal Model for Verification of Abstract Properties
This report is given a specification "s" that states the requirements of a problem in terms of data dependencies. There are also given some assumptions about the input domain and to define a formal model that can be used to verify that a program written according to the specification "s" does indeed have the data dependencies specified by "s."
GenoGraphics for OpenWindows
GenoGraphics is a generic utility for constructing and querying one-dimensional linear plots. The outgrowth of a request from Dr. Cassandra Smith for a tool to facilitate her genome mapping research. GenoGraphics development has benefited from a continued collaboration with her. Written in Sun Microsystem's OpenWindows environment and the BTOL toolkit developed at Argonne National Laboratory. GenoGraphics provides an interactive, intuitive, graphical interface. Its features include: viewing multiple maps simultaneously, zooming, and querying by mouse clicking. By expediting plot generation, GenoGraphics gives the scientist more time to analyze data and a novel means for deducing conclusions.
Argonne National Laboratory-East Site Environmental Report for Calendar Year 1991
This report discusses the results of the environmental protection program at Argonne National Laboratory-East (ANL) for 1991. To evaluate the effects of ANL operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the ANL site were analyzed and compared to applicable guidelines and standards. A variety of radionuclides was measured in air, surface water, groundwater, soil, grass, and bottom sediment samples.
Surveillance of Site A and Plot M : Report for 1991
The results of the environmental surveillance program conducted at Site A/plot M in the Palos Forest Preserve area for CY 1991 are presented. The surveillance program is the ongoing remedial action that resulted from the 1976-1978 radiological characterization of the site. That study determined that very low levels of hydrogen-3 (as tritiated water) had migrated from the burial ground and were present in two nearby hand-pumped picnic wells. The current program consists of sample collection and analysis of air, surface and subsurface water, and bottom sediment.
Nuclear Technology Programs Semiannual Progress Report: April-September 1990
Progress report of the Argonne National Laboratory's Nuclear Technology Programs, including R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management.
Operational Health Physics Training
This revised publication updates a previous report (ANL-7291) initially published in 1965, entitled Radiation Safety Technician Training Course which was intended to complement on-the-job monitoring training for Health Physics Technicians. Sections include basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of alpha, beta, gamma, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units).
Stress Corrosion Cracking of Candidate Waste Container Materials: Final Report
Six alloys have been selected as candidate container materials for the storage of high-level nuclear waste at the proposed Yucca mountain site in Nevada. These materials are Type 304L stainless steel (SS). Type 316L SS, Incoloy 825, phosphorus-deoxidized Cu, Cu-30%Ni, and Cu-7%Al. The present program has been initiated to determine whether any of these materials can survive for 300 years in the site environment without developing through-wall stress corrosion cracks. and to assess the relative resistance of these materials to stress corrosion cracking (SCC)- A series of slow-strain-rate tests (SSRTs) and fracture-mechanics crack-growth-rate (CGR) tests was performed at 93(degree)C and 1 atm of pressure in simulated J-13 well water. This water is representative, prior to the widespread availability of unsaturated-zone water, of the groundwater present at the Yucca Mountain site.
Is There a Large Risk of Radiation? a Critical Review of Pessimistic Claims
A number of situations where it has been claimed that moderate radiation doses cause leukemia or other cancers are carefully reviewed. We look at cases in the United States, Great Britain, and the Soviet Union. Usually it can be demonstrated that there is an alternative, more probable, explanation for the effect seen. In several cases the authors of the papers have fallen into statistical traps. The most frequent is a posteriori selection of cohort boundaries in both space and time: a trap illustrated dramatically by Feynman. The next most common trap is to arbitrarily select one out of many ways of looking at the data, against which we were warned by Tippett. Several cohorts are compared with respect to the number of persons at risk, average dose, and the number of cancers expected. Of these, only the cohort of A-bomb survivors in Japan and the recently unclassified data on the very large occupational doses for early Soviet nuclear workers at Chelyabinsk provide evidence of clearly visible excess cancers.
The Use of a Centrifugal Contactor for Component Concentration by Solvent Extraction
Theoretical and experimental work was undertaken to explore the use of the Argonne design centrifugal contactor as a concentrating device for metal ions in solutions such as transuranic-containing waste streams and contaminated groundwater. First, the theoretical basis for operating the contactor as a concentrator was developed. Then, the ability of the contactor to act as a concentrating device was experimentally demonstrated with neodymium over a wide range of organic-to-aqueous (O/A) flow ratios (0.01 to 33). These data were also used to derive a correlation for the effect of O/A flow ratio on extraction efficiency.
Actinide Recovery Using Aqueous Biphasic Extraction: Initial Developmental Studies
Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.
Physics Division Annual Review: April 1, 1991-March 31, 1992
Annual report of activities of the Argonne National Laboratory Physics Division, including research at ATLAS, medium-energy nuclear physics and weak interactions, theoretical nuclear physics, and atomic and nuclear physics research.
Reformers for the Production of Hydrogen from Methanol and Alternative Fuels for Fuel Cell Powered Vehicles
The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R & D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.
COMMIX-1AR/P. a Three-Dimensional Transient Single-Phase Computer Program for Thermal Hydraulic Analysis of Single and Multicomponent Systems, Volume 2: User's Guide
The COMMIX-1AR/P computer code is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-(epsilon) model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the code to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several post processor programs which produce graphical displays of the calculated results. This document provides a step-by-step of how to use the program, including an input guide and a sample problem.
COMMIX-1AR/P. a Three-Dimensional Transient Single-Phase Computer Program for Thermal Hydraulic Analysis of Single and Multicomponent Systems, Volume 3: Programmer's Guide
The COMMIX-LAR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-lA to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a keg model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The internal aspects of the COMMIX-LAR/P program are presented, covering descriptions of subprograms, variables, and files. This document provides a description of each subroutine and variable, showing linkage among these and their relation to the equations and variables presented in Volume 1.
Dynamics and Controls in Maglev Systems
The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, and vehicle stability is an important safety-related element. To design a proper guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore the trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. In this study, the role of dynamics and controls in maglev vehicle/guideway interactions is discussed, and the literature on modeling the dynamic interactions of vehicle/guideway and suspension controls for ground vehicles is reviewed. Particular emphasis is placed on modeling vehicle/guideway interactions and response characteristics of maglev systems for a multicar, multiload vehicle traveling on a single- or doublespan flexible guideway, including coupling effects of vehicle/guideway, comparison of concentrated and distributed loads, and ride comfort. Different control-law designs are introduced into vehicle suspensions when a simple two-degree-of-freedom vehicle model is applied. Active and semiactive control designs for primary and secondary suspensions do improve the response of vehicle and provide acceptable ride comfort. Finally, future research associated with dynamics and controls of vehicle/guideway systems is identified.
Feasibility of MHD Submarine Propulsion
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.
7-GeV Advanced Photon Source Instrumentation Initiative. Conceptual Design Report
In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R & D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R & D.
Practical Superconductor Development for Electrical Power Applications, Annual Report: 1992
Annual report for the superconductor program at Argonne National Laboratory discussing the group's activities and research. This report describes the technical progress of research and development efforts aimed at producing superconducting components that are based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and (Tl,Pb)-(Ba,Sr)-Ca-Cu oxide systems including: synthesis and heat treatment of high-Ta superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, fabrication and properties of thin films, and development of prototype components.
Research in Mathematics and Computer Science: March 1, 1991 - September 30, 1992
This report discusses the following topics in mathematics and computer science at Argonne National Laboratory: Harnessing the Power; Modeling Piezoelectric Crystals; A Two-Way Street; The Challenge Is On; A True Molecular Engineering Capability; CHAMMPions Attack Climate Issues; Studying Vortex Dynamics; Studying Vortex Structure; Providing Reliable and Fast Derivatives; Automating Reasoning for Scientific Problem Solving; Optimization and Mathematical Programming; Scalable Algorithms for Linear Algebra; Reliable Core Software; Computing Phylogenetic Trees; Managing Life-Critical Systems; Interacting with Data through Visualization; New Tools for New Technologies.
A Vibration Model for Centrifugal Contactors
Using the transfer matrix method, we created the Excel worksheet "Beam" for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k(sub B)) of a motor after measuring the k(sub B) value for three different motors. The k(sub B) value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well.
Nuclear Technology Programs Semiannual Progress Report: October 1990-March 1991
Progress report of the Argonne National Laboratory's Nuclear Technology Programs, including R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management.
A Test Implementation of the MPI Draft Message-Passing Standard
Message passing is a common method for programming parallel computers. The lack of a standard has significantly impeded the development of portable software libraries for these machines. Recently, an ad-hoc committee was formed to develop a standard for message-passing software for parallel computers. This group first met in April 1992 at a workshop sponsored in part by the Center for Research on Parallel Computation (CRPC). Four of the attendees at that meeting produced a draft standard, henceforth referred to as the MPI (Message-Passing Interface) draft standard. After review by a larger group, and significant changes in the document, a meeting was held in November to discuss the MPI draft standard. This document is a result of those discussions; it describes a running implementation of in most of the proposed standard, plus additional routines that were suggested by the discussions at the November meeting.
Toward a Methodology for Complexity Management
This report focuses on the Battle Management/Command, Control, and Communication (BM/C³) element of the Global Protection Against Limited Strike (GPALS) system. The approach is based on the development and validation of a generic BM/C³ model. Central to the approach is the tenet that the design is divided into multiple layers. The critical functions make up the bottom layer, where trust is established and significant design effort is required.
Users Guide and Tutorial for PC-GenoGraphics: Version 1
PC-GenoGraphics is a visual database/query facility designed for reasoning with genomic data. Data are represented to reflect variously accurate notions of the location of their sites, etc., along the length of the genome. Sequence data are efficiently stored and queried via a rather versatile language so that entire sequences of organisms will be treatable as they emerge. Other classes of information, such as function descriptions, are stored in a relational form, and joint queries relating these to sequence properties are supported. All queries result in visual responses that indicate locations along the genome. The results of queries can themselves be promoted to be queryable objects against which further queries can be launched.
Back to Top of Screen