Search Results

A Novel Membrane Reactor for Direct Hydrogen Production From Coal Annual Report

Description: Gas Technology Institute is developing a novel concept of membrane gasifier for high efficiency, clean and low cost production of hydrogen from coal. The concept incorporates a hydrogen-selective membrane within a gasification reactor for direct extraction of hydrogen from coal-derived synthesis gases. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under high temperature, high pressure, and harsh environments of the coal gasification conditions. The best performing membranes will be selected for preliminary reactor design and cost estimates. To evaluate the performances of the candidate membranes under the gasification conditions, a high temperature/high pressure hydrogen permeation unit has been constructed in this project. The unit is designed to operate at temperatures up to 1100 C and pressures to 60 atm for evaluation of ceramic membranes such as mixed ionic conducting membrane. The unit was fully commissioned and is operational. Several perovskite membranes based on the formulations of BCN (BaCe{sub 0.8}Nd{sub 0.2}O{sub 3-x}) and BCY (BaCe{sub 0.8}Y{sub 0.2}O{sub 3-x}) were prepared by GTI and tested in the new permeation unit. These membranes were fabricated by either uniaxial pressing or tape casting technique with thickness ranging from 0.2 mm to 0.7 mm. Hydrogen permeation data for the BCN perovskite membrane have been successfully obtained for temperatures between 800 and 950 C and pressures from 1 to 12 bar. The highest hydrogen flux was measured at 1.6 STPcc/min/cm{sup 2} at a hydrogen feed pressure of 12 bar and 950 C with a membrane thickness of 0.22 mm. A membrane gasification reactor model was developed to consider the H{sub 2} permeability of the membrane, the kinetics and the equilibriums of the gas phase reactions in the gasifier, the operating conditions and the configurations of the membrane reactor. The results …
Date: October 26, 2004
Creator: Doong, Shain; Ong, Estela; Atroshenko, Mike; Lau, Francis & Roberts, Mike

A Novel Membrane Reactor for Direct Hydrogen Production From Coal Quarterly Report

Description: Gas Technology Institute is developing a novel concept of membrane gasifier for high efficiency, clean and low cost production of hydrogen from coal. The concept incorporates a hydrogen-selective membrane within a gasification reactor for direct extraction of hydrogen from coal synthesis gases. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying the potential candidate membranes under high temperature, high pressure, and harsh environments of the coal gasification conditions. The best performing membranes will be selected for preliminary reactor design and cost estimates. To evaluate the candidate membrane performance under the gasification conditions, a high temperature/high pressure hydrogen permeation unit will be constructed in this project. During this reporting period, the design of this unit was completed. The unit will be capable of operating at temperatures up to 1100 C and pressures to 60 atm for evaluation of ceramic membranes such as mixed ionic conducting membrane. The membranes to be tested will be in disc form with a diameter of about 3 cm. By operating at higher temperatures and higher hydrogen partial pressures, we expect to demonstrate commercially relevant hydrogen flux, 10 {approx} 50 cc/min/cm{sup 2}, from the membranes made of the perovskite type of ceramic material. The construction of the unit is planned to be completed by the end of the next reporting period.
Date: January 22, 2004
Creator: Doong, Shain; Ong, Estela; Atroshenko, Mike; Lau, Francis & Roberts, Mike
Back to Top of Screen