UNT Libraries Government Documents Department - 108 Matching Results

Search Results

1997 evaluation of tritium removal and mitigation technologies for Hanford Site wastewaters
This report contains results of a biennial assessment of tritium separation technology and tritium nitration techniques for control of tritium bearing wastewaters at the Hanford Site. Tritium in wastewaters at Hanford have resulted from plutonium production, fuel reprocessing, and waste handling operations since 1944. this assessment was conducted in response to the Hanford Federal Facility Agreement and Consent Order.
Absorptance measurements of transmissive optical components by the surface thermal lensing technique
The surface thermal lensing technique (STL) successfully resolved and measured the absorptance of transmissive optical components: near- normal angle-of-incidence anti-reflectors and beam splatters. The STL system uses an Ar ion laser to pump the components at 514.5 mn. The absorptance-induced surface deformation diffracts the HeNe probe beam into a photo-detector. The signal intensity was calibrated with a sample of known absorptance. The optical components were designed to function in a copper vapor laser (CVL) transport system, and were previously tested for absorptance with a high power CVL system at 511 rtm. To assure proper absorptance data from the STL system, the pump laser power densities were set at the operational level of the coatings, absorptance time trends were monitored, and absorptance area scans were made. Both types of transmissive optics are more stable than the CVL high reflectors that were measured in another study. Parameter studies based on Fresnel diffraction theory were also performed to optimize experimental condition. The STL system was assessed to have 10 ppb sensitivity for absorption measurement given 2 W of pump power.
Adoption Promotion Legislation in the 105th Congress
This report discusses the type of adoption legislation in the 105th Congress. Specifically, the report tackles the idea that children are kept in foster care too long and that this may cause lower adoption rates. The report also discusses the enormous support for this legislation in the Senate and the House.
Adoption Promotion Legislation in the 105th Congress
President Clinton signed the Adoption and Safe Families Act into law on November 19, 1997, after the House and Senate approved final versions of the legislation on November 13. The new law (P.L. 105-89) is intended to promote adoption or other permanent arrangements for foster children who are unable to return home, and to make general improvements in the nation’s child welfare system. The House initially passed legislation (H.R. 867) on April 30 by a vote of 416-5, and the Senate passed an amended version on November 8. A compromise version was passed on November 13, by a vote of 406-7 in the House and by unanimous consent in the Senate. This report discusses the final version of the legislation, as enacted into law.
Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of C02 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales
The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.
Antiproton fast ignition for Inertial Confinement Fusion
With 180MJ/{micro}g, antiprotons offer the highest stored energy per unit mass of any known entity. We investigate the use of antiprotons to promote fast ignition in an ICF capsule and seek high gains with only modest compression of the main fuel. Unlike standard fast ignition where the ignition energy is supplied by an energetic, short pulse laser, the energy here is supplied through the ionization energy deposited when antiprotons annihilate at the center of a compressed fuel capsule. In the first of two candidate fast ignition schemes, the antiproton package is delivered by a low energy external ion beam. In the second, ''autocatalytic'' scheme, the antiprotons are pre-emplaced at the center of the capsule prior to compression. In both schemes, we estimate that {approximately}3x10{sup 13} antiprotons are required to initiate fast ignition in a typical ICF capsule and show that incorporation of a thin, heavy metal shell is desirable to enhance energy deposition in the igniter zone. In addition to obviating the need for a second energetic fast laser and vulnerable final optics, this scheme would achieve central without reliance on laser channeling through halo plasma or houlrahm debris. However, in addition to the unknowns involved in the storage and manipulation of antiprotons at low energy, the other large uncertainty for the practicality of such a scheme is the ultimate efficiency of antiproton production in, an external, optimized facility.
Application of the Granuflow Process to Pipeline-Transported Coal Slurry CRADA PC96-010, Final Report
In light of the current difficulties in processing fine coal and the potential for a significant increase in fines due to more demanding quality specifications, the U.S. Department of Energy's Federal Energy Technology Center (FETC) has been involved in the reconstitution of the fine clean coal resulting from advanced fine coal cleaning technologies. FETC has invented and developed a new strategy that combines fine-coal dewatering and reconstitution into one step. The process reduces the moisture content of the clean coal, and alleviates handling problems related to dustiness, stickiness, flowability, and freezing. This process has been named the GranuFlow Process. Early work successfully demonstrated the feasibility of the process for laboratory-scale vacuum filtration dewatering using asphalt emulsion. Further tests focused on the application of the process to a screen-bowl centrifuge via batch mode tests at 300 lb/hr. These tests produced roughly the same results as the laboratory filtration tests did, and they included some testing using Orimulsion, a bitumen emulsion. The Orimulsion seemed to offer greater potential for moisture reduction and was less affected by colder slurry temperatures. Most recently, FETC has conducted several series of tests in its Coal Preparation Process Research Facility. These tests dramatically showed the visible difference in the dewatered product by applying the GranuFlow Process, turning it from a clumpy, wet, sticky material into a granular, dry free-flowing product. In addition, it verified previous results with improvements in moisture content, dustiness, stickiness, and freezing. Orimulsion showed a significant benefit over asphalt emulsion in moisture reduction at additions more than 5%. The overall goal of this project was to successfully apply FETC'S GranuFlow Process to improve coal slurry pipeline operations. Williams Technologies, Inc. (WTI), a leader in pipeline technology, has an interest in reducing the moisture content of the coal at the end of a coal slurry …
Appropriations for FY1998: Interior and Related Agencies
The annual Interior and Related Agencies Appropriations bill includes funding for agencies and programs in four separate federal departments, as well as numerous smaller agencies and diverse programs. This report discusses the FY1998 appropriations authorized under this bill.
Audit of environmental monitoring and health physics laboratories at the Savannah River Site
The Environmental Monitoring and Health Physics Laboratories at the Department of Energy`s (Department) Savannah River Site are over 40 years old and are approaching the end of their useful lives. The managing and operating contractor, Westinghouse Savannah River Company (Westinghouse), and the Savannah River Operations Office (Operations Office) proposed to build two new facilities to replace them. We conducted this audit to determine whether the construction of new laboratories was the most cost-effective alternative to accomplish the site`s environmental monitoring and health physics missions.
Audit of selected government-funded grants and contracts at Princeton University
This audit was performed to determine the allowability of costs claimed by Princeton under 20 Government-funded, cost-reimbursement grants and contracts (agreements). The agreements audited were those assigned to two principal investigators who were also employed by a commercial business. The audit included test procedures for validating claimed costs by records tracing. For indirect costs and employee benefit costs, the audit analyzed whether claimed costs were based on approved fixed rates applied to appropriate allocation bases. In addition to reviewing Princeton`s records, documentation from the commercial business was reviewed. The audit identified conditions that called into question the amount of labor effort and expenditures incurred on the 20 Princeton agreements. Specifically, the number of hours that the principal investigators reported to have worked at the commercial business raised doubt about the amount of effort that was actually devoted to the agreements. Based on audit findings, recommendations were made for corrective actions by Princeton and for cost recovery by the contracting officers.
Audit of the US Department of Energy`s consolidated financial statements for Fiscal Year 1996
The Office of Inspector General audited the Department`s Consolidated Statement of Financial position as of September 30, 1996, and the related Statement of Operations and Changes in Net Position for the year ended. Results are described.
Beautiful CP violation
CP violation is observed to date only in K{sup 0} decays and is parameterizable by a single quantity {epsilon}. Because it is one of the least understood phenomena in the Standard Model and holds a clue to baryogenesis, it must be investigated further. Highly specialized searches in K{sup 0} decays are possible. Effects in B decays are much larger. In addition to the traditional B{sub d} {yields} J/{psi}K{sub S}, {pi}{sup +}{pi}{sup {minus}} asymmetries, CP violation could be searched for in already existing inclusive B data samples. The rapid B{sub s}--{anti B}{sub s} oscillations cancel in untagged B{sub s} data samples, which therefore allow feasibility studies for the observation of CP violation and the extraction of CKM elements with present vertex detectors. The favored method for the extraction of the CKM angle {gamma} is shown to be unfeasible and a solution is presented involving striking direct CP violation in charged B decays. Novel methods for determining the B{sub s} mixing parameter {Delta}m are described without the traditional requirement of flavor-specific final states.
Biochemical genetics of Lignin degradation
Summaries are presented on the biodegradation of lignin by Phanerochaete Chrysporium. Studies focused in the genetics of biodegradation by the enzyme activity of peroxidases.
Biological Monitoring Program for East Fork Poplar Creek
In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y- 12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.
Calderon Cokemaking Process/Demonstration Project.
This project deals with the demonstration of a coking process using Calderon`s proprietary technology for: (i) making coke of such quality as to be suitable for use in high driving blast furnaces; and (ii) providing proof that such process is continuous and environmentally closed to prevent emissions. The activities of the past quarter were entirely focused on the rehabilitation of Calderon`s Process Development Unit (PDU-1) in Alliance, Ohio to conduct a series of tests under steady state using coal from Bethlehem Steel and U.S. Steel in order to demonstrate the above.
Cassini RTG Program monthly technical progress report, July 28--August 24, 1997
The technical progress achieved during this period is described. This report is organized by program task structure: (1) spacecraft and integration liaison; (2) engineering support; (3) safety; (4) qualified unicouple production; (5) ETG fabrication, assembly, and test; (6) ground support equipment (GSE); (7) RTG shipping and launch support; (8) designs, reviews, and mission applications; (9) project management, quality assurance, reliability, contract changes, CAGO acquisition (operating funds), and CAGO maintenance and repair; and (10) CAGO acquisition (capital funds).
Cassini RTG program. Monthly technical progress report, September 29, 1997--October 26, 1997
This report describes work on the contract to provide Radioisotope Thermoelectric Generators (RTG) and Ancillary Activities in support of the Cassini Spacecraft launch. The craft was successfully launched on October 15, 1997. Early telemetry results show excellent performance from the three launched RTG modules. A major share of this report describes safety analyses for contamination radii in the event of launch failures and generator destruction, as well as launch related activities.
Cesium-137 in K west basin canister water
Liquid and gas samples were taken from 50 K West Basin fuel storage canisters in 1996. The cesium-137 data from the liquid samples and an analysis of the data are presented. The analysis indicated that the cesium-137 data follow a lognormal distribution. Assuming that the total distribution of the K West canister water was predicted, the total K West Basin canister water was estimated to contain about 8,150 curies. The mean canister contains about 2.14 curies with as many as 5% or 190 of the canisters exceeding 19 curies. Opening ten canisters per shift could include a hot canister (cesium-137 > 25 curies) in one out of eight shifts.
Characterization of nodular and thermal defects in hafnia/silica multilayer coatings using optical, photothermal, and atomic force microscopy
Multilayer coatings manufactured from metallic hafnium and silica sources by reactive electron beam deposition, are being developed for high fluence optics in a fusion laser with a wavelength of 1053 nm and a 3 ns pulse length. Damage threshold studies have revealed a correlation between laser damage and nodular defects, but interestingly laser damage is also present in nodule-free regions. Photothermal studies of optical coatings reveal the existence of defects with strong optical absorption in nodule-free regions of the coating. A variety of microscopic techniques were employed to characterize the effects for a better understanding of the thermal properties of nodular defects and role of thermal defects in laser damage. Photothermal microscopy, utilizing the surface thermal lensing technique, was used to map the thermal characteristics of 3 mm x 3 mm areas of the coatings. High resolution subaperture scans, with a 1 pm step size and a 3 um pump beam diameter, W= conducted on the defects to characterize their photothermal properties. Optical and atomic force microscopy was used to visually identify defects and characterize their topography. The defects were then irradiated to determine the role of nodular and thermal defects in limiting the damage threshold of the multilayer.
Cold vacuum drying facility design requirements
This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.
COMSORS: A light water reactor chemical core catcher
The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate lightwater reactor (LWR) core-melt accidents and ensure containment integrity. A special dissolution glass made of lead oxide (PbO) and boron oxide (B{sub 2}O{sub 3}) is placed under the reactor vessel. If molten core debris is released onto the glass, the following sequence happens: (1) the glass absorbs decay heat as its temperature increases and the glass softens; (2) the core debris dissolves into the molten glass; (3) molten glass convective currents create a homogeneous high-level waste (HLW) glass; (4) the molten glass spreads into a wider pool, distributing the heat for removal by radiation to the reactor cavity above or transfer to water on top of the molten glass; and (5) the glass solidifies as increased surface cooling area and decreasing radioactive decay heat generation allows heat removal to exceed heat generation.
Conscription of proteins for new functionality. Technical progress report
This report focuses on research in the following areas: development of function-based screening routines; generating methods for sorting output of database searches; developing strategies for determining chemically relevant three-dimensional scaffolds; and the integration of computational methodologies into user friendly tools.
Conservation Reserve Program: Status and Policy Issues
The Conservation Reserve Program (CRP), enacted in 1985, enables producers to bid to retire highly erodible or environmentally sensitive cropland, usually for 10 years. Participants receive annual rental and cost-sharing payments, and technical assistance to install approved plantings. Up to 36.4 million acres have been enrolled; current enrollment is estimated to be 32.9 million acres.
Criticality safety evaluation report for spent nuclear fuelprocessing and storage facilities
This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially- built baskets containing either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the MCO/Cask, operations at the Cold Vacuum Drying Facility (CVDF), and storage in the Canister Storage Building (CSB). Many conservatisms have been built into this analysis, the primary one being the selection of the k{sub eff} @ 0.95 criticality safety limit.
Crystallization pathway in the bulk metallic glass Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5}.
A new family of multicomponent metallic alloys exhibits an excellent glass forming ability at moderate cooling rates of about 10K/s and a wide supercooled liquid region. These glasses are eutectic or nearly eutectic, thus far away from the compositions of competing crystalline phases. The nucleation of crystals from the homogeneous amorphous phase requires large thermally activated composition fluctuations for which the time scale is relatively long, even in the supercooled liquid. In the Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} alloy therefore a different pathway to crystallization is observed. The initially homogeneous alloy separates into two amorphous phases. In the decomposed regions, crystallization probability increases and finally polymorphic crystallization occurs. The evolution of decomposition and succeeding primary crystallization in the bulk amorphous Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5}, alloy have been studied by small angle neutron. Samples annealed isothermally in the supercooled liquid and in the solid state exhibit interference peaks indicating quasiperiodic inhomogeneities in the scattering length density. The related wavelengths increase with temperature according to the linear Cahn-Hilliard theory for spinodal decomposition. Also the time evolution of the interference peaks in the early stages is consistent with this theory. At later stages, X-ray diffraction and transmission electron microscopy investigations confirm the formation of nanocrystals in the decomposed regions.
D0 Silicon Upgrade: Control Dewar Venturi Calibration Explanation for Toshiba
This document is intended to explain the calibration data for the venturi, FE-3253H, which is installed in the control dewar. Further, this document will help explain how to use the venturi to make mass flow measurements during typical operating conditions. The purpose of the calibration data enclosed from the Colorado Engineering Experiment Station Inc. is to experimentally show that the venturi follows the flow equation which is enclosed as Eq. 7-36 on page 155, from the Applied Fluid Dynamics Handbook. The calibration data serves to show that the Subsonic Venturi, Serial Number 611980-18, produces results predicted by the compressible subsonic flow mass flow rate equation above and to experimentally determine the discharge coefficient C. Colorado Engineering Experiment Station Inc. ran tests at 15 independent differential pressures to conclude that use of this venturi will perform according to the mass flow rate equation. In order to verify the results from the Colorado Engineering Experiment Station Inc. we have provided you with a step-by-step procedure using the values they have chosen.
Design, synthesis, characterization and study of novel conjugated polymers
After introducing the subject of conjugated polymers, the thesis has three sections each containing a literature survey, results and discussion, conclusions, and experimental methods on the following: synthesis, characterization of electroluminescent polymers containing conjugated aryl, olefinic, thiophene and acetylenic units and their studies for use in light-emitting diodes; synthesis, characterization and study of conjugated polymers containing silole unit in the main chain; and synthesis, characterization and study of silicon-bridged and butadiene-linked polythiophenes.
Development of an analysis capability for the National Transportation System
The purpose of this report is to examine the Department of Transportation`s (DOT) National Transportation System (NTS) initiative, to document what has been learned, and to outline a National Transportation Network Analysis Capability (NTNAC) based on a ``TRANSIMS-like`` approach. This study was conducted over a two month period at the end of FY1997. The scope of the effort was carefully defined to accommodate the short time horizon and to provide focus to a very large analytical problem. The objectives were to: (1) define the NTS and the NTS problem; (2) identify problem characteristics; (3) describe an analytical solution based on the TRANSIMS approach; (4) identify data requirements and availability; (5) develop criteria for a scenario to be used in a prototype demonstration; and (6) select a scenario for the prototype demonstration.
Diffraction-limited, high average power phase-locking of four 30J beams from discrete Nd:glass zig-zag amplifiers
A single ND:YLF oscillator beam is amplified in four discrete Nd:glass, flashiamp-pumped, zig-zag amplifiers. The resulting four 30J beams are phase- locked using SBS phase conjugation, resulting in near diffraction-limited 120J pulses from a single aperture at up to a 1 OHz pulse repetition frequency.
Engineering development of coal-fired high performance power systems, Phase 2: Selective non-catalytic reduction system development
Most of the available computational models for Selective Non- Catalytic Reduction (SNCR) systems are capable of identifying injection parameters such as spray droplet size, injection angles and velocity. These results allow identification of the appropriate injection locations based on the temperature window and mixing for effective dispersion of the reagent. However, in order to quantify No{sub x} reduction and estimate the potential for ammonia slip, a kinetic model must be coupled with the mixing predictions. Typically, reaction mechanisms for SNCR consist of over 100 elementary steps occurring between approximately 30 different species. Trying to model a mechanism of this size is not practical. This ABB project incorporated development of SNCR systems including NO{sub x} reduction and ammonia slip. The model was validated using data collected from a large-scale experimental test facility. The model developed under this project can be utilized for the SNCR system design applicable to HIPPS. The HITAF design in the HIPPS project includes low NO{sub x} firing system in the coal combustor and both selective non-catalytic reduction (SNCR) downstream of the radiant heating section and selective catalytic reduction in a lower temperature zone. The performance of the SNCR will dictate the capacity and capital cost requirements of the SCR.
Environmental and economic assessment of discharges from Gulf of Mexico Region Oil and Gas Operations
Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) and 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved continued data analysis and report writing. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) was issued as a final report during the previous reporting period. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) activities included the preparation of the final report. There were no Task 7 (Technology Transfer Plan) activities to report. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.
Final technology report for D-Area oil seepage basin bioventing optimization test, environmental restoration support
One method proposed for the cleanup of the D-Area Oil Seepage Basin was in situ bioremediation (bioventing), involving the introduction of air and gaseous nutrients to stimulate contaminant degradation by naturally occurring microorganisms. To test the feasibility of this approach, a bioventing system was installed at the site for use in optimization testing by the Environmental Biotechnology Section of the Savannah River Technology Center. During the interim action, two horizontal wells for a bioventing remediation system were installed eight feet below average basin grade. Nine piezometers were also installed. In September of 1996, a generator, regenerative blower, gas cylinder station, and associated piping and nutrient injection equipment were installed at the site and testing was begun. After baseline characterization of microbial activity and contaminant degradation at the site was completed, four injection campaigns were carried out. These consisted of (1) air alone, (2) air plus triethylphosphate (TEP), (3) air plus nitrous oxide, and (4) air plus methane. This report describes results of these tests, together with conclusions and recommendations for further remediation of the site. Natural biodegradation rates are high. Oxygen, carbon dioxide, and methane levels in soil gas indicate substantial levels of baseline microbial activity. Oxygen is used by indigenous microbes for biodegradation of organics via respiration and hence is depleted in the soil gas and water from areas with high contamination. Carbon dioxide is elevated in contaminated areas. High concentrations of methane, which is produced by microbes via fermentation once the oxygen has been depleted, are found at the most contaminated areas of this site. Groundwater measurements also indicated that substantial levels of natural contaminant biodegradation occurred prior to air injection.
Final test report: demonsration testing in support of the Track 3system waste dislodging, retrieval and conveyance concepts
This report contains the quantitative and qualitative data and information collected during performance of the Track 3 System testing protocol. Information contained herein focuses on the data collected during performance ofthe following Tests Procedures. *Test Procedure-1, Position Management Test Procedure-2, Waste Dislodging, Retrieval, and Conveyance and Decontamination *Test Procedure-3, Dynamic Response Test procedures, Safety Demonstration
First RHIC Sextant Test ? Results and Accomplishment
No Description Available.
Flammable gas interlock spoolpiece flow response test report
The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.
Fluor Daniel Hanford contract standards/requirements identification document
This document, the Standards/Requirements Identification Document (S/RID) for the Fluor Daniel Hanford Contract, represents the necessary and sufficient requirements to provide an adequate level of protection of the worker, public health and safety, and the environment.
Forecasting and Futures Research in Congress: Background and Prospects
This report explores different roles and use of foresight into Congressional process.
Frame work on an on-line regulations expert permit server, Semi-annual technical progress report, September 25, 1996--March 24, 1997
The Interstate Oil and Gas Compact Commission and its member states have become increasingly concerned about environmental compliance costs for the petroleum exploration and production industry with estimated costs for 1990 at about $2 billion. Over the last decade, these costs have increased at a rate of 3 to 5% per year. At a time when regulatory and environmental needs and costs are increasing, major oil companies are restructuring and reducing staffs. The places an increased burden on the remaining personnel charged with regulatory compliance duties. As major oil producers have begun to concentrate on their more profitable overseas properties, they have created a greater role for the approximately 8000 independent oil and gas producers in the U.S. with many being small independent producers with limited staff. With small staffs, the independents lack the infrastructure to address an increasingly important aspect of production operations: compliance with environmental regulations. Depending on the level of industry activity, the oil and gas industry could incur an additional $16 to $24 billion in increased environmental compliance expenditures by the end of the 1990`s. At current oil prices, the abandonment of remaining resources in known oil reservoirs could be accelerated by approximately ten years, and up to 30% of currently producing resources could be immediately abandoned because of increased regulations. Transferring new and innovative technologies to the industry can help defer reservoir abandonments, improve regulatory compliance, lower the costs of compliance, reduce risk, and help assure the development of new domestic resources.
Fundamental studies of hydrogen chemisorption on supported monometallic and bimetallic catalysts using microcalorimetry
Highly dispersed transition metal catalysts are used in numerous commercial processes such as hydrocarbon conversions. For example, the use of Pt supported on acidic alumina or silica-alumina for reforming of naphtha in the production of gasoline is well known. Another use of supported catalysts is in automobile emission control where supported Pt-Rh bimetallic catalysts are used. Supported Ru can be used in Fischer-Tropsch synthesis for the production of higher hydrocarbons from synthesis gas. While many of these catalyst systems have been in commercial operation for several decades there is still a lack of consensus regarding the exact role of the catalyst on a molecular level. In particular, little is known about the mechanisms operating on the catalyst surface at the high pressure and high temperature conditions typically used in commercial operations. This report contains the general introduction and conclusions and an appendix containing the operating instructions for a microcalorimeter. Three chapters have been processed separately. They are: the effect of K on the kinetics and thermodynamics of hydrogen adsorption on Ru/SiO{sub 2}; hydrogen adsorption states on silica supported Ru-Ag and Ru-Cu bimetallic catalysts investigated via microcalorimetry; a comparative study of hydrogen chemisorption on silica supported Ru, Rh, and Pt.
Generator acceptance test and inspection report
This Acceptance Test Report(ATR) is the completed testing and inspection of the new portable generator. The testing and inspection is to verify that the generator provided by the vendor meets the requirements of specification WHC-S-0252, Revision 2. Attached is various other documentation to support the inspection and testing.
Grants Work in a Congressional Office
The discussion describes some basics about the grants process and some of the approaches and techniques used by congressional offices in dealing with this type of constitutional service
Grants Work in a Congressional Office
Members of Congress often get requests from constituents for information and help in obtaining funds for projects. Many state and local governments, nonprofit social service and community action organizations, private research groups, small businesses, and individuals approach congressional offices to find out about funding, both from the federal government and from the private sector. The success rate in obtaining federal assistance is not high, given the competition for federal funds. A grants staff’s effectiveness often depends on both an understanding of the grants process and on the relations it establishes with agency and other contacts. The following report does not constitute a blueprint for every office involved in grants and projects activity, nor does it present in-depth information about all aspects of staff activity in this area. The discussion is aimed at describing some basics about the grants process and some of the approaches and techniques used by congressional offices in dealing with this type of constituent service.
Hanford Tanks Initiative alternate retrieval system demonstrations - final report of testing performed by Grey Pilgrim LLC
A waste retrieval system has been defined to provide a safe and cost-effective solution to the Hanford Tanks Initiative. This system consists of the EMMA robotic manipulator (by GreyPilgrim LLC) and the lightweight Scarifier (by Waterjet Technology, Inc.) powered by a 36-kpsi Jet-Edge diesel powered high pressure pumping system. For demonstration and testing purposes, an air conveyance system was utilized to remove the waste from the simulated tank floor. The EMMA long reach manipulator utilized for this demonstration was 33 feet long. It consisted of 4 hydraulically controlled stages of varying lengths and coupling configurations. T
Improvement of Moist and Radiative Processes in Highly Parallel Atmospheric General Circulation Models: Validation and Development
Research on designing an integrated moist process parameterization package was carried. This work began with a study that coupled an ensemble of cloud models to a boundary layer model to examine the feasibility of such a methodology for linking boundary layer and cumulus parameterization schemes. The approach proved feasible, prompting research to design and evaluate a coupled parameterization package for GCMS. This research contributed to the development of an Integrated Cumulus Ensemble-Turbulence (ICET) parameterization package. This package incorporates a higher-order turbulence boundary layer that feeds information concerning updraft properties and the variances of temperature and water vapor to the cloud parameterizations. The cumulus ensemble model has been developed, and initial sensitivity tests have been performed in the single column model (SCM) version of CCM2. It is currently being coupled to a convective wake/gust front model. The major function of the convective wake/gust front model is to simulate the partitioning of the boundary layer into disturbed and undisturbed regions. A second function of this model is to predict the nonlinear enhancement of surface to air sensible heat and moisture fluxes that occur in convective regimes due to correlations between winds and anomalously cold, dry air from downdrafts in the gust front region. The third function of the convective wake/gust front model is to predict the amount of undisturbed boundary layer air lifted by the leading edge of the wake and the height to which this air is lifted. The development of the wake/gust front model has been completed, and it has done well in initial testing as a stand-alone component. The current task, to be completed by the end of the funding period, is to tie the wake model to a cumulus ensemble model and to install both components into the single column model version of CCM3 for evaluation. Another area …
The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report
Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.
Integrated safety management approach for the approval and conduct of subcritical experiments (SCE) for the science-based Nuclear Stockpile Stewardship Program
No Description Available.
Interactions between self-assembled monolayers and an organophosphonate: A detailed study using surface acoustic wave-based mass analysis, polarization modulation-FTIR spectroscopy, and ellipsometry
Self-assembled monolayers (SAMs) having surfaces terminated in the following functional groups: -CH{sub 3}, -OH, -COOH, and (COO{sup -}){sub 2}Cu{sup 2+} (MUA-Cu{sup 2+}) have been prepared and examined as potential chemically sensitive interfaces. Mass measurements made using surface acoustic wave (SAW) devices indicate that these surfaces display different degrees of selectivity and sensitivity to a range of analytes. The response of the MUA-Cu{sup 2+} SAM to the nerve-agent simulant diisopropyl methylphosphonate (DIMP) is particularly intriguing. Exposure of this surface to 50%-of-saturation DIMP yields a surface concentration equivalent to about 20 DIMP monolayers. Such a high surface concentration in equilibrium with a much lower-than-saturation vapor pressure has not previously been observed. Newly developed analytical tools have made it possible to measure the infrared spectrum of the chemically receptive surface during analyte dosing. Coupled with in-situ SAW/ellipsometry measurements, which permit simultaneous measurement of mass and thickness with nanogram and Angstrom resolution, respectively, it has been possibly to develop a model for the surface chemistry leading to the unusual behavior of this system. The results indicate that DIMP interacts strongly with surface-confined Cu{sup 2+} adduct that nucleates growth of semi-ordered crystallites having substantially lower vapor pressure than the liquid.
Irradiation data for the MFA-1 and MFA-2 tests in the FFTF
This report provides key information on the irradiation environment of the MONJU fuel tests MFA-1 and MFA-2 in the Fast Flux Test Facility (FFTF). This information includes the fission powers, neutron fluxes, sodium temperatures and sodium flow rates in MFA-I, MFA-2 and adjacent assemblies. It also includes MFA-1 and MFA-2 compositions as a function of exposure. The work was performed at the request of Power Reactor and Nuclear Fuels Corporation (PNC) of Japan.
Judicial Nominations by President Clinton During the 103rd and 104th Congresses
No Description Available.
LHe Storage Dewar Pressure Vessel & Vacuum Vessel Engineering Note
No Description Available.
Back to Top of Screen