UNT Libraries Government Documents Department - 177,453 Matching Results

Search Results

"Don't Ask, Don't Tell": A Legal Analysis

Description: This report provides a legal analysis of the various constitutional challenges that have been brought against "Don't Ask, Don't Tell" (DADT).
Date: December 20, 2010
Creator: Feder, Jody

Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress

Description: This report provides background information and issues for Congress on the Aegis ballistic missile defense (BMD) program, including whether to approve, reject, or modify MDA and Navy funding requests for the program, and whether to provide MDA or the Navy with additional direction concerning the program. Congress's decisions regarding the Aegis BMD program could substantially affect U.S. BMD capabilities and funding requirements, U.S. Navy ship force levels and operating patterns, and the defense industrial base.
Date: April 19, 2011
Creator: O'Rourke, Ronald

Optical properties of fly ash. Volume 1, Final report

Description: Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executive summary of the whole program followed by the dissertation of Ghosal. Volume 1 contains the dissertation of Ghosal which covers the characterization of fly ash and the measurements of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.
Date: December 1, 1994
Creator: Self, S.A.

Optical properties of fly ash. Volume 2, Final report

Description: Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executive summary of the whole program followed by the dissertation of Ghosal and Ebert. Volume 2 contains the dissertation of Ebert which covers the measurements of the optical constants of slags, and calculations of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.
Date: December 1, 1994
Creator: Self, S.A.

Mixed-conducting ceramic membranes for partial oxygenation of methane

Description: The most significant cost associated with the conventional partial oxidation of methane is that of an oxygen plant. Our new technology offers a way to lower this cost, and in this paper we explore the technology that is based on dense ceramic membranes and that uses air as the oxidant for methane-conversion reactions. Mixed-conducting ceramic materials have been produced from mixed-oxide systems of the La-Sr-Fe-Co-O (SFC) type, in the form of tubes and bars. Thermodynamic stability of the tubes was studied as a function of oxygen partial pressure by high-temperature XRD. Mechanical properties were measured and found to be adequate for a reactor in the case of SFC-2: Electronic and ionic conductivities were measured; SFC-2 is unique in the sense that the ratio of ionic to electronic conductance is close to unity. Performance of the membrane tubes was good only with SFC-2. Fracture of other SFC tubes was the consequence of an oxygen gradient that introduced a volumetric lattice difference between the inner and outer walls. SFC-2 tubes provided methane conversion efficiencies of >99% in a reactor. These tubes have operated for >1000 h.
Date: May 1, 1995
Creator: Balachandran, U.; Dusek, J.T.; Maiya, P.S.; Mieville, R.L.; Kleefisch, M.S.; Udovich, C.A. et al.

Development of an ultrasonic process for soil remediation

Description: An ultrasonic process for the detoxification of carbon tetrachloride- (CCl{sub 4}{sup {minus}}) contaminated soil was investigated in the laboratory by using a batch irradiation reactor equipped with a 600-W ultrasonic power supply operated at a frequency of 20 kHz. Key parameters studied included soil characteristics, irradiation time, CCl{sub 4} concentration, steady-state operating temperature, applied ultrasonic-wave energy, and the ratio of soil to water in the system. The results of the experiments showed that (1) residual CCl{sub 4} concentrations could be decreased with longer irradiation periods and (2) detoxification efficiency was proportional to steady-state operating temperature and applied ultrasonic-wave energy. The characteristics of the contaminated soil were found to be an important factor in the design of an ultrasonic detoxification system. A soil-phase CCl{sub 4} concentration below 1 ppm (initial concentration of 56 ppm) was achieved through this process, indicating that the application of ultrasonic irradiation is feasible and effective in the detoxification of soil contaminated by organic compounds. On the basis of the experimental results, a schematic of a full-scale ultrasonic soil-detoxification system was developed. Improvements to this novel process are discussed.
Date: June 1, 1995
Creator: Wu, J.M.; Huang, H.S. & Livengood, C.D.

Development of the Integrated Performance Evaluation Program (IPEP) for the Department of Energy`s Office of Environmental Management

Description: Argonne National Laboratory (ANL) and DOE`s Radiological and Environmental Sciences Laboratory (RESL), Environmental Measurements Laboratory (EML), and Grand Junction Project office (GJPO) are collaborating with DOE`s Office of Environmental Management (EM), Analytical Services Division (ASD, EM-263) and the Environmental Protection Agency (EPA) to develop an Integrated Performance Evaluation Program (IPEP). The purpose of the IPEP is to integrate information from existing PE programs with expanded QA activities to develop information about the quality of radiological, mixed waste, and hazardous environmental sample analyses provided by all laboratories supporting EM programs. The IPEP plans to utilize existing PE programs when available and appropriate for use by DOE; new PE programs will be developed only when no existing program meets DOEs needs. Interagency Agreements have been developed between EPA and DOE to allow DOE to use major existing PE programs developed by EPA. In addition, the DOE radiological Quality Assessment Program (QAP) administered by EML is being expanded for use in EM work. RESL and GJPO are also developing the Mixed Waste Performance Evaluation Program (MAPEP) to provide radiological, inorganic, and organic analytes of interest to EM programs. The use of information from multiple PE programs will allow a more global assessment of an individual laboratory`s performance, as well as providing a means of more fairly comparing laboratories` performances in a given analytical area. The EPEP will interact with other aspects of the ASD such as audit and methods development activities to provide an integrated system for assessment and improvement of data quality.
Date: June 1, 1995
Creator: Lindahl, P.; Streets, E.; Bass, D.; Hensley, J.; Newberry, R. & Carter, M.

Determining training needs from supervisors` assessment of staff proficiency in tasks and skills

Description: To provide the basis for establishing training opportunities, this project investigated supervisors` views of three components of staff activities. The project established the tasks that staff perform, identified staffs level of effectiveness in performing these tasks, and investigated staffs level of proficiency in performing the skills underlying these tasks. Training opportunities were then determined in those areas where knowledge and skins could be improved for staff to perform their tasks more effectively. Staff currently perform their tasks sufficiently well. Furthermore, supervisors indicated that for the most part staff do perform the tasks they should perform. In carrying out these tasks, staff use primarily critical thinking, problem solving, and communication skills rather than discipline-specific skills. Although staff generally have working knowledge of most of these skills, additional training in critical thinking and problem solving, program and project management techniques, and communications is appropriate to further improve the organizations effectiveness.
Date: June 1, 1995
Creator: Young, C.; Hensley, J. & Lehr, J.

Automated cloning methods.

Description: Argonne has developed a series of automated protocols to generate bacterial expression clones by using a robotic system designed to be used in procedures associated with molecular biology. The system provides plate storage, temperature control from 4 to 37 C at various locations, and Biomek and Multimek pipetting stations. The automated system consists of a robot that transports sources from the active station on the automation system. Protocols for the automated generation of bacterial expression clones can be grouped into three categories (Figure 1). Fragment generation protocols are initiated on day one of the expression cloning procedure and encompass those protocols involved in generating purified coding region (PCR).
Date: August 22, 2001
Creator: Collart, F.

Users guide to the Argonne SP scheduling system

Description: During the past five years scientists discovered that modern UNIX workstations connected with ethernet and fiber networks could provide enough computational performance to compete with the supercomputers of the day. As this concept became increasingly popular, the need for distributed queuing and scheduling systems became apparent. Today, supercomputers, such as Argonne National Laboratory`s IBM SP system, can provide more CPU and networking speed than can be obtained from these networks of workstations. These modern supercomputers look like clusters of workstations, however, so developers felt that the scheduling systems that were previously used on clusters of workstations should still apply. After trying to apply some of these scheduling systems to Argonne`s SP environment, it became obvious that these two computer environments have very different scheduling needs. Recognizing this need and realizing that no one has addressed it, we developed a new scheduling system. The approach taken in creating this system was unique in that user input and interaction were encouraged throughout the development process. Thus, a scheduler was built that actually worked the way the users wanted it to work. This document serves a dual purpose. It is both a user`s guide and an administrator`s guide for the ANL SP scheduling system. Look for revisions to this guide that will be appearing.
Date: May 1, 1995
Creator: Lifka, D.A.; Henderson, M.W. & Rayl, K.

Automated laser scatter detection of surface and subsurface defects in Si{sub 3}N{sub 4} components

Description: Silicon Nitride (Si{sub 3}N{sub 4}) ceramics are currently a primary material of choice to replace conventional materials in many structural applications because of their oxidation resistance and desirable mechanical and thermal properties at elevated temperatures. However, surface or near-subsurface defects, such as cracks, voids, or inclusions, significantly affect component lifetimes. These defects are currently difficult to detect, so a technique is desired for the rapid automated detection and quantification of both surface and subsurface defects. To address this issue, the authors have developed an automated system based on the detection of scattered laser light which provides a 2-D map of surface or subsurface defects. This system has been used for the analysis of flexure bars and button-head tensile rods of several Si{sub 3}N{sub 4} materials. Mechanical properties of these bars have also been determined and compared with the laser scatter results.
Date: June 1995
Creator: Steckenrider, J. S.


Description: This second annual report summarizes the research performed from 17 April 2004 through 16 April 2005. Major portions of the research in several of the project's current eight tasks have been completed. We have successfully developed the meteorological inputs using the best possible modeling configurations, resulting in improved representation of atmospheric processes. The development of the variable-grid-resolution emissions model, SMOKE-VGR, is also completed. The development of the MAQSIP-VGR has been completed and a test run was performed to ensure the functionality of this air quality model. Thus, the project is on schedule as planned. During the upcoming reporting period, we expect to perform the first MAQSIP-VGR simulations over the Houston-Galveston region to study the roles of the meteorology, offshore emissions, and chemistry-transport interactions that determine the temporal and spatial evolution of ozone and its precursors.
Date: May 13, 2005
Creator: Alapaty, Kiran


Description: During the past six months we have adapted our 3-D elastic, anisotropic finite difference code by implementing the rotated staggered grid (RSG) method to more accurately represent large contrasts of elastic moduli between the fractures and surrounding formation, and applying the perfectly matched layer (PML) absorbing boundary condition to minimize boundary reflections. Two approaches for estimating fracture spacing from scattered seismic energy were developed. The first relates notches in the amplitude spectra of the scattered wavefield to the dominant fracture spacing that caused the scattering. The second uses conventional FK filtering to isolate the backscattered signals and then recovers an estimate of the fracture spacing from the dominant wavelength of those signals. Both methods were tested on synthetic data and then applied to the Emilio field data. The spectral notch method estimated the Emilio fracture spacing to be about 30 to 40 m, while the FK method found fracture spacing of about 48 to 53 m. We continue to work on two field data sets from fractured carbonate reservoirs provided by our industry sponsors--the offshore Emilio Field data (provided by ENIAGIP), and an onshore reservoir from the Middle East (provided by Shell). Calibration data in the form of well logs and previous fracture studies are available for both data sets. In previous reports we showed the spatial distribution fractures in the Emilio Field based on our calculated scattering index values. To improve these results we performed a map migration of all the scattering indices. The results of this migration process show a very strong correlation between the spatial distribution and orientation of our estimated fracture distribution and the fault system in the field. We observe that the scattering index clusters tend to congregate around the fault zones, particularly near multiple faults and at fault tips. We have also processed a ...
Date: August 1, 2005
Creator: Burns, Daniel R. & Toksoz, M. Nafi


Description: Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.
Date: July 29, 2005
Creator: Nuttall, Brandon C.

The effect of soil mineral phases on the abiotic degradation of selected organic compounds. Final report, June 31, 1990--December 31, 1994

Description: Funds were received from the United States Department of Energy to study the effects of soil mineral phases on the rates of abiotic degradation of tetraphenylborate (TPB) and diphenylboronic acid (DPBA). In addition to kaolinite and montmorillonite clay minerals, the role of goethite, corundum, manganite, and rutile in the degradation of organoborates was also evaluated. The effects of DPBA, argon, molecular dioxygen (O{sub 2}), temperature, and organic matter on the degradation of organoborates were also measured. The results indicated that TPB and DPBA degraded rapidly on the mineral surfaces. The initial products generated from the degradation of TPB were DPBA and biphenyl; however, further degradation resulted in the formation of phenylboric acid and phenol which persisted even after TPB disappeared. The data also showed that the rate of TPB degradation was faster in kaolinite, a 1:1 clay mineral, than in montmorillonite, a double layer mineral. The initial degradation of TPB by corundum was much higher than goethite, manganite and rutile. However, no further degradation by this mineral was observed where as the degradation of TPB continued by goethite and rutile minerals. Over all, the degradation rate of TPB was the highest for goethite as compared to the other metal oxide minerals. The degradation of TPB and DPBA was a redox reaction where metals (Fe, Al, Ti, Mn) acted as Lewis acids. DPBA and argon retarded the TPB degradation where as molecular oxygen organic matter and temperature increased the rate of TPB disappearance.
Date: December 31, 1994
Creator: Sandhu, S.S.

Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Technical progress report, January 1, 1995--March 31, 1995

Description: The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be developed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project.
Date: May 2, 1995
Creator: Allison, M.L.

High-temperature membranes for H{sub 2}S and SO{sub 2} separations. Final report

Description: Electrochemical cells which separate H{sub 2}S and S0{sub 2} from hot gas streams have two important materials issues that limit their successful industrial application: (1) membranes and (2) electrodes. These were the focus of the present study. For the H{sub 2}S work, experimental analysis incorporated several membrane and electrode materials; densified zirconia provided the best matrices for entrainment of electrolytic species, ionic mobility, and a process-gas barricade hindering the capabilities of gas cross-over, alternate reactions. Electrode materials of lithiated Ni converted to NiO in-situ were successful in polishing applications; however H{sub 2}S levels >100 ppM converted the NiO cathode to a molten nickel sulfide necessitating the use of Co. Lithiated NiO for the anode material remained morphologically stable and conductive in all experimentation. High temperature electrochemical removal of H{sub 2}S from coal gasification streams has been shown on the bench scale level at the Georgia Institute of Technology utilizing the aforementioned materials. Experimental removals from 1000 ppM to 100 ppM H{sub 2}S and 100 ppM to 10 ppM H{sub 2}S proved over 90% removal with applied current was economically feasible due to high current efficiencies ({approximately}100%) and low polarizations. For the S0{sub 2}work, an extensive search was conducted for a suitable membrane material for use in the S0{sub 2} removal system. The most favorable material found was Si{sub 3}N{sub 4}, proven to be more efficient than other possible materials. New lithiated NiO electrodes were also developed and characterized, proving more stable than previously used pervoskite electrodes. The combination of these new components led to 90% removal at near 100% current efficiency over a wide range of current densities.
Date: January 1, 1995
Creator: Winnick, J.

Work plan for focused feasibility study of the toxic burning pits area at J-Field, Aberdeen Proving Ground, Maryland

Description: The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCIA). J-Field is within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA)(predecessor to the US Army Environmental Center). As part of a subsequent USATHAMA environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-0021355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in which data were collected to model groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today-
Date: March 1995
Creator: Biang, C.; Benioff, P.; Martino, L. & Patton, T.

Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River Basins, Wyoming. Second quarterly, second year, technical progress report, January 1, 1995--March 31, 1995

Description: This study is designed to provide improvements in reservoir characterization techniques. Activities include: an examination of the spatial variation and anisotropy of relative permeability in the Tensleep Sandstone reservoirs of Wyoming; the placement of that variation and anisotropy into paleogeographic, depositional and diagenic frameworks; the development of pore system imagery techniques for the calculation of relative permeability; and reservoir simulations testing the impact of permeability and anisotropy on enhanced oil recovery. Results are described.
Date: April 13, 1995
Creator: Dunn, T.L.

Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 2

Description: Lubrication properties of refrigeration lubricants were investigated in high pressure nonconforming contacts under different conditions of temperature, rolling speed, and refrigerant concentration. The program was based upon the recognition that the lubrication regime in refrigeration compressors is generally elastohydrodynamic or hydrodynamic, as determined by the operating conditions of the compressor and the properties of the lubricant. Depending on the compressor design, elastohydrodynamic lubrication conditions exist in many rolling and sliding elements of refrigeration compressors such as roller element bearings, gears, and rotors. The formation of an elastohydrodynamic film separating rubbing surfaces is important in preventing the wear and failure of compressor elements. It is, therefore, important to predict the elastohydrodynamic (EHD) performance of lubricants under realistic tribocontact renditions. This is, however, difficult as the lubricant properties that control film formation are critically dependent upon pressure and shear, and cannot be evaluated using conventional laboratory instruments. In this study, the elastohydrodynamic behavior of refrigeration lubricants with and without the presence of refrigerants was investigated using the ultrathin film EHD interferometry technique. This technique enables very thin films, down to less than 5 nm, to be measured accurately within an EHD contact under realistic conditions of temperature, shear, and pressure. The technique was adapted to the study of lubricant refrigerant mixtures. Film thickness measurements were obtained on refrigeration lubricants as a function of speed, temperature, and refrigerant concentration. The effects of lubricant viscosity, temperature, rolling speed, and refrigerant concentration on EHD film formation were investigated. From the film thickness measurements, effective pressure-viscosity coefficients were calculated. The lubricants studied in this project included two naphthenic mineral oils (NMO), four polyolesters (POE), and two polyvinyl ether (PVE) fluids. These fluids represented viscosity grades of ISO 32 and ISO 68 and are shown in a table. Refrigerants studied included R-22, R-134a, and R-410A. Film thickness ...
Date: April 1, 1999
Creator: Gunsel, Selda & Pozebanchuk, Michael


Description: The objective of this research program is to improve high temperature piezoelectric aluminum nitride (AlN) sensor technology to make it useful for instrumentation and health monitoring of current and future electrical power generation equipment. The program will extend the temperature range of the sensor from approximately 700 C to above 1000 C, and ultrasonic coupling to objects at these temperatures will be investigated and tailored for use with the sensor. The chemical vapor deposition (CVD) AlN deposition process was successfully transferred from film production on tungsten carbide substrates to titanium alloy and silicon carbide (SiC) substrates in the first year of the program, and additional substrates were evaluated. In the second year of the program, additional substrate research was performed with the goal of improving the performance of using SiC substrates. While greatly improved bandwidth was achieved, sensor survival at elevated temperature remains problematic. The elevated temperature coupling work continued with significant experimentation. Molten glasses were found to work within a limited temperature range, but metal foils applied with heat and pressure were found to have superior performance overall. The final year of the program will be dedicated to making further advances in AlN/ substrate behavior, and the design and implementation of a sensor demonstration experiment at very high temperature in a simulated industrial application.
Date: March 1, 2005
Creator: Sebastian, James