UNT Libraries Government Documents Department - 223,190 Matching Results

Search Results

0-2 kv Flash Tube Supplies

Description: The power supplies designed and constructed to power high-intensity flash tubes are described. Three supplies, capable of charging 100 mfd to 2 kv with a repetltion rate of not less than 0.8 sec, are operated remotely from a control panel containing 3 powerstats. The power supplies are full wave center trapped rectifiers employing silicon rectifiers. (M.C.G.)
Date: March 15, 1962
Creator: Miller, D. M.

0. 20-m (8-in.) Primary Burner Development Report

Description: High-Temperature Gas-Cooled Reactors (HTGRs) utilize graphite-base fuels. Fluidized-bed burners are being employed successfully in the experimental reprocessing of these fuels. The primary fluidized-bed burner is a unit operation in the reprocessing flowsheet in which the graphite moderator is removed. A detailed description of the development status of the 0.20-m (8-in.) diameter primary fluidized-bed burner as of July 1, 1977 is presented. Experimental work to date performed in 0.10; 0.20; and 0.40-m (4, 8, and 16 in.) diameter primary burners has demonstrated the feasibility of the primary burning process and, at the same time, has defined more clearly the areas in which additional experimental work is required. The design and recent operating history of the 0.20-m-diameter burner are discussed, with emphasis placed upon the evolution of the current design and operating philosophy.
Date: December 1977
Creator: Stula, R. T.; Young, D. T. & Rode, J. S.

The 0.38 Percent Across-the-Board Cut in FY2000 Appropriations

Description: This report outlines cuts made in the federal budget for FY2000. The 0.38% cut was expected to yield savings of $2.4 billion in budget authority and $1.4 billion in outlays for the fiscal year. Departments with cuts in excess of $100 million included the Departments of Defense, Transportation, Health and Human Services, and Education.
Date: February 25, 2000
Creator: Keith, Robert

0.351 micron Laser Beam propagation in High-temperature Plasmas

Description: A study of the laser-plasma interaction processes have been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. The plasma emulator is produced in a gas-filled hohlraum; a blue 351-nm laser beam propagates along the axis of the hohlraum interacting with a high-temperature (T{sub e} = 3.5 keV), dense (n{sub e} = 5 x 10{sup 20}cm{sup -3}), long-scale length (L {approx} 2 mm) plasma. Experiments at these conditions have demonstrated that the interaction beam produces less than 1% total backscatter resulting in transmission greater than 90% for laser intensities less than I < 2 x 10{sup 15} W-cm{sup -2}. The bulk plasma conditions have been independently characterized using Thomson scattering where the peak electron temperatures are shown to scale with the hohlraum heater beam energy in the range from 2 keV to 3.5 keV. This feature has allowed us to determine the thresholds for both backscattering and filamentation instabilities; the former measured with absolutely calibrated full aperture backscatter and near backscatter diagnostics and the latter with a transmitted beam diagnostics. A plasma length scaling is also investigated extending our measurements to 4-mm long high-temperature plasmas. At intensities I < 5 x 10{sup 14} W-cm{sup -2}, greater than 80% of the energy in the laser is transmitted through a 5-mm long, high-temperature (T{sub e} > 2.5 keV) high-density (n{sub e} = 5 x 10{sup 20} w-cm{sup -3}) plasma. Comparing the experimental results with detailed gain calculations for the onset of significant laser scattering processes shows a stimulated Brillouin scattering threshold (R=10%) for a linear gain of 15; these high temperature, low density experiments produce plasma conditions comparable to those along the outer beams in ignition hohlraum designs. By increasing the gas fill density (n{sub e} = 10{sup 21} cm{sup -3}) in these ...
Date: December 10, 2007
Creator: Froula, D.; Divol, L.; Meezan, N.; Ross, J.; Berger, R. L.; Michel, P. et al.

0.52eV Quaternary InGaAsSb Thermophotovoltaic Diode Technology

Description: Thermophotovoltaic (TPV) diodes fabricated from 0.52eV lattice-matched InGaAsSb alloys are grown by Metal Organic Vapor Phase Epitaxy (MOVPE) on GaSb substrates. 4cm{sup 2} multi-chip diode modules with front-surface spectral filters were tested in a vacuum cavity and attained measured efficiency and power density of 19% and 0.58 W/cm{sup 2} respectively at operating at temperatures of T{sub radiator} = 950 C and T{sub diode} = 27 C. Device modeling and minority carrier lifetime measurements of double heterostructure lifetime specimens indicate that diode conversion efficiency is limited predominantly by interface recombination and photon energy loss to the GaSb substrate and back ohmic contact. Recent improvements to the diode include lattice-matched p-type AlGaAsSb passivating layers with interface recombination velocities less than 100 cm/s and new processing techniques enabling thinned substrates and back surface reflectors. Modeling predictions of these improvements to the diode architecture indicate that conversion efficiencies from 27-30% and {approx}0.85 W/cm{sup 2} could be attained under the above operating temperatures.
Date: June 9, 2004
Creator: Dashiell, M. W.; Beausang, J. F.; Nichols, G.; Depoy, D. M.; Danielson, L. R.; Ehsani, H. et al.

0-D study of the compression of low temperature spheromaks

Description: Compression of low temperature spheromak plasmas has been studied with the aid of a O-D two-fluid computer code. It is found that in a plasma which is radiation dominated, the electron temperature can be increased by up to a factor of seven for a compression of a factor of two, provided the temperature is above some critical value (approx.25eV) and the electron density particle confinement time product n/sub e/tau/sub p/ greater than or equal to 1 x 10/sup 9/s/cm/sup 3/. If the energy balance is dominated by particle confinement losses rather than radiation losses, the effect of compression is to raise the temperature as T/sub e/ approx.C/sup 6/5/, for constant tau/sub p/.
Date: September 1, 1985
Creator: Meyerhofer, D.D.; Hulse, R.A. & Zweibel, E.G.

D-0 End Calorimeter Warm Tube/TeV Dry Air Purge

Description: This Engineering Note studies the design of the Dry Air Purge that is going to flow through the Warm Tube of the End Calorimeter of the D-O Calorimeter. The Tev tubes through the E.C. can be thought of as a cluster of concentric tubes: The Tev tube, the warm (vacuum vessel) tube, 15 layers of superinsulation, the cold (argon vessel) tube, and the Inner Hadronic center support tube. The Dry Air Purge will involve flowing Dry Air through the annular region between the Warm Tube and the Tev Beam Pipe. This air flow is intended to prevent condensation from forming in this region which could turn to ice under cryogenic temperatures. Any ice formed in this gap, could cause serious problems when these tubes are moved. The Air will flow through a Nylon Tube Fitting -1/4-inch I.D. to 1/8-inch male pipe thread (Cole Palmer YB-06465-15) see Drawing MC-295221 (Appendix A). This fitting will be attached to the Nylon 2-inch Tube-Wiper and Seal Assembly which is clamped to the ends of the Warm Tube (Appendix A). This note includes drawings and calculations that explain the setup of the Dry Air Purge and give the required information on the pressure drops through the setup. The Equations and properties used in the calculations were obtained from the Applied Fluid Dynamics Handbook by Robert D. Blevins and Fluid Dynamics Second Edition by Frank M. White.
Date: August 14, 1991
Creator: Leibfritz, J. R.

D-0 North End Cap Calorimeter Cold Test Results

Description: The North endcap calorimeter vessel was recieved on July 1, 1990. A cooldown of the pressure vessel with liquid nitrogen was performed on July 10-11 to check the vessel's integrity. With the pressure vessel cold, the insulating vacuum was monitored for leaks. Through out the testing, the insulating vacuum remained good and the vessel passed the test. The cold test was carried out per the procedures of D-Zero engineering note 3740.220-EN-250. The test was very similar to the cold test performed on the Central Calorimeter in October of 1987. Reference D-Zero engineering notes 3740.210-EN-122, 3740.000-EN107, and 3740.210-EN-110 for information about the CC cold test. The insulating vacuum space was pumped on while equipment was being connected to the pressure vessel. Two hours after starting to pump with the blower the vacuum space pressure was at about 210 microns. Pumping on the vacuum space for the next 15 hours showed no progress and a leak detector was connected to the pumping line. A leak check showed a leak in a thermocouple feedthru on the vacuum space relief plate. After fixing the leak, the pressure dropped to 16 microns in less than one hour. A rate of rise test was performed starting at a pressure of 13 microns. The pressure rose to 39 microns within 8 minutes and then only rose to 43 microns in 2.5 hours (1.6 microns/hour). After all connections were made to the pressure vessel, a vacuum pump with an estimated effective pumping speed of about 70 scfm was valved on. The lowest pressure achieved after 2 days of pumping was 80 microns. Valving out the pump for 30 minutes resulted in a 5 micron per minute rate of rise. The rate of rise was considered acceptable since there were known leak paths through the bolts of the signal ...
Date: August 2, 1990
Creator: Michael, J.

D-0 South End Cap Calorimeter Cold Test Results

Description: The South endcap calorimeter vessel was moved into Lab A on Sept. 18, 1990. A cooldown of the pressure vessel with liquid nitrogen was performed on Sept. 26 to check the vessel's integrity. With the pressure vessel cold, the insulating vacuum was monitored for leaks. Through out the testing, the insulating vacuum remained good and the vessel passed the test. The cold test was carried out per the procedures of D-Zero engineering note 3740.220-EN-250. The test was very similar to the cold test performed on the Central Calorimeter in October of 1987. The test of the ECS was performed in the same manner using the same equipment as the ECN cold test. Reference D-Zero engineering notes 3740.210-EN-122, 3740.000-EN-I07, and 3740.210-EN-II0 for information about the CC cold test. Reference EN-260 for the results of the ECN cold test. The insulating vacuum space was pumped on while equipment was being connected to the pressure vessel. Two hours after starting to pump with the blower the vacuum space pressure was at about 40 microns. The pumping continued overnight (another 16 hours). In the morning the pressure was 11.5 microns. A rate of rise test was performed. With the pump valved off, the pressure rose to 14 microns within 5 minutes and then rose to 16 microns in 6 hours (0.33 microns/hour). After all connections were made to the pressure vessel, a vacuum pump with an estimated effective pumping speed of about 70 scfm was valved on. After 18 hours, the pressure vessel was down to 270 microns. An additional day of pumping took the pressure down to only 250 microns. A leak was then found and fixed around the seal of the rupture disc. The pump was put on line again. The pressure vessel with pump on line was 27 microns after 16.5 ...
Date: November 26, 1990
Creator: Rucinski, R.

1/2/sup +/. -->. 1/2/sup -/ beta decay of /sup 19/Ne and the parity nonconserving NN force

Description: A branching ratio of (1.20 +- 0.20) x 10/sup -4/ is obtained for the ..beta../sup +/ decay of /sup 19/Ne to the 110 keV 1/2/sup -/ level of /sup 19/F. This transition (presumably dominated by the ..delta..J/sup ..pi../ = 0/sup -/ axial charge operator) provides a crucial test of wavefunctions used in interpreting the parity mixing of the ground and 110 keV levels of /sup 19/F. These wavefunctions, which yield a parity mixing larger than that observed experimentally, also predict too large a ..beta../sup +/ decay rate.
Date: January 1, 1978
Creator: Adelberger, E.G.; Hindi, M.M.; Hoyle, C.D.; Swanson, H.E. & Von Lintig, R.D.

A 1. 5--4 Kelvin detachable cold-sample transfer system: Application to inertially confined fusion with spin-polarized hydrogens fuels

Description: A compact cold-transfer apparatus for engaging and retrieving samples at liquid helium temperatures (1.5--4K), maintaining the samples at such temperatures for periods of hours, and subsequently inserting them in diverse apparatuses followed by disengagement, is described. The properties of several thermal radiation-insulating shrouds, necessary for very low sample temperatures, are presented. The immediate intended application is transportable target-shells containing highly spin-polarized deuterons in solid HD or D{sub 2} for inertially confined fusion (ICF) experiments. The system is also valuable for unpolarized high-density fusion fuels, as well as for other applications which are discussed. 9 refs., 6 figs.
Date: January 1, 1990
Creator: Alexander, N.; Barden, J.; Fan, Q. & Honig, A.

1.8.2.1.2 Site system engineering implementation Fiscal Year 1998 multi-year work plan

Description: Manage the Site Systems Engineering process to provide a traceable, integrated, requirements-driven, and technically defensible baseline., Through the Site Integration Group, Systems Engineering ensures integration of technical activities across all site projects. Systems Engineering`s primary interfaces are with the Project Direction Office and with the projects, as well as with the Planning organization.
Date: October 3, 1997
Creator: Ferguson, J. E.

1.8.3 Site system engineering FY 1997 program plan

Description: The FY 1997 Multi-Year Work Plan (MYWP) technical baseline describes the functions to be accomplished and the technical standards that govern the work. The following information is provided in this FY 1997 MYWP: technical baseline, work breakdown structure, schedule baseline, cost baseline, and execution year.
Date: September 13, 1996
Creator: Grygiel, M. L.

1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation

Description: Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convective layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.
Date: January 1, 1993
Creator: Fort, J. A.; Bamberger, J. A.; Bates, J. M.; Enderlin, C. W. & Elmore, M. R.

1.5D Quasilinear Model for Alpha Particle-TAE Interaction in ARIES ACT-I

Description: We study the TAE interaction with alpha particle fusion products in ARIES ACT-I using the 1.5D quasilinear model. 1.5D uses linear analytic expressions for growth and damping rates of TAE modes evaluated using TRANSP pro les to calculates the relaxation of pressure pro les. NOVA- K simulations are conducted to validate the analytic dependancies of the rates, and to normalize their absolute value. The low dimensionality of the model permits calculating loss diagrams in large parameter spaces.
Date: January 30, 2013
Creator: Ghantous, K.; Gorelenkov, N. N.; Kessel, C. & Poli, F.

1/6TH SCALE STRIP EFFLUENT FEED TANK-MIXING RESULTS USING MCU SOLVENT

Description: The purpose of this task was to determine if mixing was an issue for the entrainment and dispersion of the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) solvent in the Defense Waste Processing Facility (DWPF) Strip Effluent Feed Tank (SEFT). The MCU strip effluent stream containing the Cs removed during salt processing will be transferred to the DWPF for immobilization in HLW glass. In lab-scale DWPF chemical process cell testing, mixing of the solvent in the dilute nitric acid solution proved problematic, and the Savannah River National Laboratory (SRNL) was requested to perform scaled SEFT mixing tests to evaluate whether the problem was symptomatic of the lab-scale set-up or of the solvent. The solvent levels tested were 228 and 235 ppm, which represented levels near the estimated DWPF solvent limit of 239 ppm in 0.001M HNO{sub 3} solution. The 239 ppm limit was calculated by Norato in X-CLC-S-00141. The general approach for the mixing investigation was to: (1) Investigate the use of fluorescent dyes to aid in observing the mixing behavior. Evaluate and compare the physical properties of the fluorescent dyed MCU solvents to the baseline Oak Ridge CSSX solvent. Based on the data, use the dyed MCU solvent that best approximates the physical properties. (2) Use approximately a 1/6th linear scale of the SEFT to replicate the internal configuration for DWPF mixing. (3) Determine agitator speed(s) for scaled testing based on the DWPF SEFT mixing speed. (4) Perform mixing tests using the 1/6th SEFT and determine any mixing issues (entrainment/dispersion, accumulation, adhesion) through visual observations and by pulling samples to assess uniformity. The mixing tests used MCU solvent fabricated at SRNL blended with Risk Reactor DFSB-K43 fluorescent dye. This dyed SRNL MCU solvent had equivalent physical properties important to mixing as compared to the Oak Ridge baseline solvent, ...
Date: February 1, 2006
Creator: Hansen, E.