UNT Libraries Government Documents Department - 78 Matching Results

Willis Library will be without power on Tuesday, August 20, 2019 from 5:00-7:00 AM CDT. All websites and web services will be down during this period.

Search Results

Advanced steel reheat furnaces: Research and development. Final report

Description: The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.
Date: January 14, 1999
Creator: Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D. & Li, X.

Analysis of Strategies to Improve Heliostat Tracking at Solar Two

Description: This paper investigates dhlerent strategies that can be used to improve the tracking accuracy of heliostats at Solar Two. The different strategies are analyzed using a geometrical error model to determine their performance over the course of a day. By using the performance of heliostats in representative locations of the field aad on representative days of the year, an estimate of the annual performance of each strategy is presented.
Date: January 14, 1999
Creator: Jones, S. A. & Stone, K. W.

Construction safety program for the National Ignition Facility Appendix A: Safety Requirements

Description: These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S & H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules.
Date: January 14, 1997
Creator: Cerruti, S. J.

(Coordinated research of chemotherapeutic agents and radiopharmaceuticals)

Description: The traveler received a United Nations Development Program (UNDP) Award for Distinguished Scientists to visit Indian Research Institutions including Central Drug Research Institute (CDRI), Lucknow, the host institution, in cooperation with the Council of Scientific and Industrial Research (CSIR) of India. At CDRI, the traveler had meetings to discuss progress and future directions of on-going collaborative research work on nucleosides and had the opportunity to initiate new projects with the divisions of pharmacology, biopolymers, and membrane biology. As a part of this program, the traveler also visited Sanjay Gandhi Post Graduate Institute (SGPI) of Medical Sciences, Lucknow; Board of Radiation and Isotope Technology (BRIT) and Bhabha Atomic Research Center (BARC), Bombay; Variable Energy Cyclotron Center (VECC) and Indian Institute of Chemical Biology, Calcutta. He also attended the Indo-American Society of Nuclear Medicine Meeting held in Calcutta. The traveler delivered five seminars describing various aspects of radiopharmaceutical development at the Oak Ridge National Laboratory (ORNL) and discussed the opportunities for exchange visits to ORNL by Indian scientists.
Date: January 14, 1991
Creator: Srivastava, P.C.

Critical comments on the US Environmental Protection Agency Standards 40 CFR 191

Description: This paper is about the US Environmental Protection Agency (EPA) ``Environmental Standards for the Disposal of Spent Nuclear Fuel, High-Level and Transuranic Wastes,`` 40 CFR 191. These standards regulate the disposal of radioactive wastes in geologic repositories. Currently, two repository sites are under investigation: The Waste Isolation Pilot Plant (WIPP) site, located near Carlsbad, New Mexico, may become the repository for defense-generated transuranic waste (TRU); and the Yucca Mountain site, located near Las Vegas, Nevada, may become the repository for spent reactor fuel and a small amount of reprocessing waste (hereinafter called high-level radioactive waste or HLW). The paper was written for readers who have an interest in 40 CFR 191 but do not have the time or inclination to ponder the technical details.
Date: January 14, 1993
Creator: Pflum, C. G.; Van Konynenburg, R. A. & Krishna, P.

Crystal structures of mixed-conducting oxides present in the Sr-Fe-Co-O system.

Description: The potential applications of mixed-conducting ceramic oxides include solid-oxide fuel cells, rechargeable batteries, gas sensors and oxygen-permeable membranes. Several perovskite-derived mixed Sr-Fe-Co oxides show not only high electrical-conductivity but also appreciable oxygen-permeability at elevated temperatures. For example, dense ceramic membranes of SrFeCo{sub 0.5}O{sub 3{minus}{delta}} can be used to separate oxygen from air without the need for external electrical circuitry. The separated oxygen can be directly used for the partial oxidation of methane to produce syngas. Quantitative phase analysis of the SrFeCo{sub 0.5}O{sub 3{minus}{delta}} material has revealed that it is predominantly composed of two Sr-Fe-Co-O systems, Sr{sub 4}Fe{sub 6{minus}x}Co{sub x}O{sub 13} and SrFe{sub 1{minus}x}Co{sub x}O{sub 3{minus}{delta}}. Here we report preliminary structural findings on the SrFe{sub 1{minus}x}Co{sub x}O{sub 3{minus}{delta}} (0 {le} x {le} 0.3) system.
Date: January 14, 1998
Creator: Hodges, J. P.; Jorgensen, J. D.; Miler, D. J.; Ma, B.; Balachandran, U. & Richardson, J. W., Jr.

D0 Clean Room ODH Analysis Instrument Air Considerations

Description: The ODH problem in this case involves the instrument air line to the clean room. which is isolated by a check valve from the gaseous nitrogen trailer backup source (valve CV787I, see DRG. NO. 3740.510-MA-273995, attached (the 'to purging enclosure' line nms to the clean room)). Normally, the check valve prevents backflow through the instrument air line. But as we all know, valves can fail. The estimated mean failure rate for a check valve to allow reverse flow is 3 {center_dot} 10{sup -7}. Failure of the instrument air and the check valve would allow the seepage ofgaseous nitrogen into the clean room. The failure of the instrument air is necessary to cause an ODH problem, due to the fact that the air pressure would keep the lower pressured gaseous nitrogen from flowing through the check valve. The compressor for the instrument air is fairly reliable, but to show the true nature of how safe this situation is, both cases that follow will assume that the compressor, and therefore the instrument air, has already failed. Table A shows the standard ODH situation. Assuming everything is working correctly (all the gasses are flowing, the ventilation is active, etc.), the only consideration is the failure of the check valve concurrent with the instrument air failure. The table clearly shows an ODH classification of 0, which would hold even for an extreme leakage, and which does not even consider the likelihood of the instrument air failure. which would lower the fatality rate even more. Note that the leak rate given in the tables following (50 scfm) is an overly generous amount considering the restricting nature of the small pipes and valve orifices. and that it is half of the compressor capacity. Table B is the same situation in the event of a power failure, ...
Date: January 14, 1991
Creator: Michael, J.

Direct-drive laser fusion: status and prospects

Description: Techniques have been developed to improve the uniformity of the laser focal profile, to reduce the ablative Rayleigh-Taylor instability, and to suppress the various laser-plasma instabilities. There are now three direct-drive ignition target designs that utilize these techniques. Evaluation of these designs is still ongoing. Some of them may achieve the gains above 100 that are necessary for a fusion reactor. Two laser systems have been proposed that may meet all of the requirements for a fusion reactor.
Date: January 14, 1998
Creator: Afeyan, B B; Bodner, S E; Gardner, J H; Knauer, J P; Lee, P; Lehmberg, R H et al.

The Effect of Electric Fields on Cathodoluminescence from Phosphors

Description: When external electric fields are applied to phosphors the cathodoluminescence (CL) at low beam energies is strongly affected. This experiment has been carried out on a variety of common phosphors used in cathode ray tube applications, and the electron beam energy, beam current, and electric field dependence of the CL are thoroughly characterized. It is found that the general features of these effects, particular y the strong polarity and beam energy dependence, are consistent with a model which assumes that the main effect of the electric fields is to alter the populations of electrons `and holes at the phosphor surface. This in turn, modulates the non-radiative energy losses that strongly affect the low-beam-energy CL efficiency. Because the external fields are applied without any direct contact to the phosphor material, the large changes seen in the CL decay rapidly as the beam-created electrons and holes polarize, shielding the externally applied bias. These results have important implications for designing phosphors which might be efficient at low electron energies.
Date: January 14, 1999
Creator: Seager, C.H.

Engineered Barrier System performance requirements systems study report. Revision 02

Description: This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS include the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken.
Date: January 14, 1997
Creator: Balady, M. A.

Engineering development of advanced coal-fired low-emission boiler system. Technical progress report No. 3, April--June 1993

Description: The ``Draft Design Uncertainties Analysis`` was submitted June 18, 1993. The purpose of the Design Uncertainties Analysis was to identify key design uncertainties of the subsystem technologies that were described in the Concept Selection Report. The analysis builds directly on analysis of the subsystems, as identified in the Concept Selection Report, and serves as a prerequisite for the preparation of the R, D&T Plan -- Task 4. Analysis of the subsystem technologies showed that uncertainties exist in each of the following major subsystems: 1. Low NO{sub x} Firing Subsystem; 2. Coal Reburn Subsystem; 3. High Temperature SNCR; 4. Particulate Control Subsystem; 5. SO{sub 2} Control Subsystem; 6. Particulate/NO{sub x}SO{sub 2} Control Subsystem; 7. Fly Ash Management System; 8. Control System and; 9. Boiler. Each of the subsystems and the boiler are briefly described in the body of the report to identify roles in the overall, integrated system. Design uncertainties within each subsystem are listed in the order of their importance. Recommendations are given for how the uncertainties can be addressed and, finally, a preliminary estimate provided for the resources required to implement the recommendations.
Date: January 14, 1994

Enhanced oil recovery utilizing high-angle wells in the Frontier Formation, Badger Basin Field, Park County, Wyoming. Quarterly technical progress report, 1 October 1993--31 December 1993

Description: The goals during this period included the following objectives from the Statement of Work: in Phase 2A, completion of Subtask 2.1.4 -- Interpret data, of Task 2.1 -- Acquire 3-D seismic data; and, in Phase 2B, completion of Subtask 2.2.1 -- Solicit bids and award, and initiation of Subtask 2.2.2 -- Acquire cores, of Task 2.2 -- Drill slant hole. Subtask 2.1.4 -- Interpret data: Interpretation of the 3- D seismic survey was completed on a Sun Sparcstation10 workstation (UNIX based), using Landmark Graphics latest version of Seisworks 3D software. Subtask 2.2.2 -- Acquire cores: Sierra had picked a location and prepared a drilling plan for the slant/horizontal wellbores. Sierra was ready to submit an Application for Permit to Drill. However, due to the fact that Sierra entered into an agreement to sell the Badger Basin property, the drilling phase was put on hold.
Date: January 14, 1994
Creator: Fortmann, R. G.

Evaluation of reactor kinetic parameters without the need for perturbation codes.

Description: The analysis of research reactor transients depends on the effective delayed neutron fraction (k{sub eff}), its family-dependent components ({beta}{sub eff,i}), the prompt neutron lifetime (l{sub p}), and the decay constants ({lambda}{sub i}) for each delayed neutron family. Beginning with ENDF/B-V data, methods are presented for accurately calculating these kinetic parameters within the framework of diffusion theory but without the need for a perturbation code. For heavy water systems these methods can be extended to include the delayed photoneutron component of {beta}{sub eff}. However, a separate calculation is needed to estimate the fractional loss of fission product gamma rays, energetic enough to dissociate the deuteron, from leakage, energy degradation and absorption in fuel and structural materials. These methods are illustrated for a light-water Oak Ridge Research Reactor (ORR) LEU core and for a heavy-water Georgia Tech Research Reactor (GTRR) HEU core where calculated and measured values of the prompt neutron decay constant ({beta}{sub eff}/l{sub p}) are compared.
Date: January 14, 1998
Creator: Bretscher, M. M.

Evolution of magnetic and superconducting fluctuations with doping of high-T{sub c} superconductors : an electronic Raman scattering study.

Description: For YBa{sub 2}Cu{sub 3}O{sub 6+{delta}} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 3{+-}{delta}} superconductors, electronic Raman scattering from high- and low-energy excitations has been studied in relation to the hole doping level, temperature, and energy of the incident photons. For underdoped superconductors, it is concluded that short range antiferromagnetic (AF) correlations persist with hole doping and doped single holes are incoherent in the AF environment. Above the superconducting (SC) transition temperature T{sub c} the system exhibits a sharp Raman resonance of B{sub 1g} symmetry and about 75 meV energy and a pseudogap for electron-hole excitations below 75 meV, a manifestation of a partially coherent state forming from doped incoherent quasi-particles. The occupancy of the coherent state increases with cooling until phase ordering at T{sub c} produces a global SC state.
Date: January 14, 1998
Creator: Blumberg, G.

Export support of renewable energy industries, grant number 1, deliverable number 3. Final report

Description: The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on grant coordination and effectiveness.
Date: January 14, 1998

Export support of renewable energy industries. Task number 1, deliverable number 3. Final report

Description: The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on task coordination and effectiveness.
Date: January 14, 1998

Flue gas conditioning for improved particle collection in electrostatic precipitators

Description: Electrostatic precipitators (ESP) serve as the primary air pollution control device for the majority of coal-fired utility boilers in the Eastern and Midwestern regions of the United States. Since most of these ESPs are collecting flyash generated from medium- and high-sulfur coal, they are not experiencing operational limitations which are common when treating high-resistivity particles and are performing at an efficiency that is as high as could be expected. However, there are indications that the collection efficiency could be improved with flue gas conditioning. Conditioning is commonly used for solving operational problems associated with high-resistivity dusts. The purpose of conditioning for low- and moderate-resistivity applications is to increase the adhesive characteristics of the dust. Flue gas conditioning that increases particle adhesion has the potential to improve collection efficiency because a large percentage of particulate emissions from a well-performing ESP is due to reentrainment. Improved ESP performance should result if particle reentrainment could be reduced by making the particles more adhesive. This could produce a significant reduction in emissions from and ESP from the Following mechanisms: reduced erosion-type reentrainment; reduced rapping emissions; reduced hopper reentrainment; increased agglomeration of fine particles.
Date: January 14, 1992
Creator: Durham, M.D.

Flue gas conditioning for improved particle collection in electrostatic precipitators. Quarterly technical report, [October--December 1991]

Description: Electrostatic precipitators (ESP) serve as the primary air pollution control device for the majority of coal-fired utility boilers in the Eastern and Midwestern regions of the United States. Since most of these ESPs are collecting flyash generated from medium- and high-sulfur coal, they are not experiencing operational limitations which are common when treating high-resistivity particles and are performing at an efficiency that is as high as could be expected. However, there are indications that the collection efficiency could be improved with flue gas conditioning. Conditioning is commonly used for solving operational problems associated with high-resistivity dusts. The purpose of conditioning for low- and moderate-resistivity applications is to increase the adhesive characteristics of the dust. Flue gas conditioning that increases particle adhesion has the potential to improve collection efficiency because a large percentage of particulate emissions from a well-performing ESP is due to reentrainment. Improved ESP performance should result if particle reentrainment could be reduced by making the particles more adhesive. This could produce a significant reduction in emissions from and ESP from the Following mechanisms: reduced erosion-type reentrainment; reduced rapping emissions; reduced hopper reentrainment; increased agglomeration of fine particles.
Date: January 14, 1992
Creator: Durham, M. D.

Fluid Dynamics in Sucker Rod Pumps

Description: Sucker rod pumps are installed in approximately 90% of all oil wells in the U.S. Although they have been widely used for decades, there are many issues regarding the fluid dynamics of the pump that have not been fully investigated. A project was conducted at Sandia National Laboratories to develop unimproved understanding of the fluid dynamics inside a sucker rod pump. A mathematical flow model was developed to predict pressures in any pump component or an entire pump under single-phase fluid and pumping conditions. Laboratory flow tests were conducted on instrumented individual pump components and on a complete pump to verify and refine the model. The mathematical model was then converted to a Visual Basic program to allow easy input of fluid, geometry and pump parameters and to generate output plots. Examples of issues affecting pump performance investigated with the model include the effects of viscosity, surface roughness, valve design details, plunger and valve pressure differentials, and pumping rate.
Date: January 14, 1999
Creator: Cutler, R.P. & Mansure, A.J.

Hanford Environmental Information System (HEIS). Volume 1, User`s guide

Description: The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. HEIS is an information system with an inclusive database. Although the database is the nucleus of the system, HEIS also provides user access software: query-by-form data entry, extraction, and browsing facilities; menu-driven reporting facilities; an ad hoc query facility; and a geographic information system (GIS). These features, with the exception of the GIS, are described in this manual set. Because HEIS contains data from the entire Hanford Site, many varieties of data are included and have.been divided into subject areas. Related subject areas comprise several volumes of the manual set. The manual set includes a data dictionary that lists all of the fields in the HEIS database, with their definitions and a cross reference of their locations in the database; definitions of data qualifiers for analytical results; and a mapping between the HEIS software functions and the keyboard keys for each of the supported terminals or terminal emulators.
Date: January 14, 1994

Hanford Environmental Information System (HEIS). Volume 2, Operator`s guide

Description: This report discusses the procedures that establish the configuration control processes for the Hanford Environmental Information System (HEIS) software. The procedures also provide the charter and function of the HEIS Configuration Control Board (CCB) for maintaining software. The software configuration control items covered under these procedures include the HEIS software and database structure. The configuration control processes include both administrative and audit functions. The administrative role includes maintaining the overall change schedule, ensuring consistency of proposed changes, negotiating change plan adjustments, setting priorities, and tracking the status of changes. The configuration control process audits to ensure that changes are performed to applicable standards.
Date: January 14, 1994