UNT Libraries Government Documents Department - 36 Matching Results

Search Results

The advanced manufacturing science and technology program. FY 95 Annual Report

Description: This is the Fiscal Year 1995 Annual Report for the Advanced Manufacturing Science and Technology (AMST) sector of Los Alamos Tactical Goal 6, Industrial Partnering. During this past fiscal year, the AMST project leader formed a committee whose members represented the divisions and program offices with a manufacturing interest to examine the Laboratory`s expertise and needs in manufacturing. From a list of about two hundred interest areas, the committee selected nineteen of the most pressing needs for weapon manufacturing. Based upon Los Alamos mission requirements and the needs of the weapon manufacturing (Advanced Design and Production Technologies (ADaPT)) program plan and the other tactical goals, the committee selected four of the nineteen areas for strategic planning and possible industrial partnering. The areas selected were Casting Technology, Constitutive Modeling, Non-Destructive Testing and Evaluation, and Polymer Aging and Lifetime Prediction. For each area, the AMST committee formed a team to write a roadmap and serve as a partnering technical consultant. To date, the roadmaps have been completed for each of the four areas. The Casting Technology and Polymer Aging teams are negotiating with specific potential partners now, at the close of the fiscal year. For each focus area we have created a list of existing collaborations and other ongoing partnering activities. In early Fiscal Year 1996, we will continue to develop partnerships in these four areas. Los Alamos National Laboratory instituted the tactical goals for industrial partnering to focus our institutional resources on partnerships that enhance core competencies and capabilities required to meet our national security mission of reducing the nuclear danger. The second industry sector targeted by Tactical Goal 6 was the chemical industry. Tactical Goal 6 is championed by the Industrial Partnership Office.
Date: March 1, 1996
Creator: Hill, J.

AIDS Funding for Federal Government Programs: FY1981-FY1999

Description: This report provides a synopsis of the budget activity related to AIDS from the discovery of the disease in 1981 through FY1999. Funding for AIDS research, prevention and treatment programs within the Department of Health and Human Services (HHS) discretionary budget has increased from $200,000 in FY1981 to an estimated $3.85 billion in FY1999.
Date: March 31, 1998
Creator: Johnson, Judith A.

AMTEX first quarter FY95 report

Description: The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Industry, the Department of Energy (DOE), the national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs.
Date: December 1, 1994

Buried Waste Integrated Demonstration FY-95 Deployment Plan

Description: The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The FY-95 effort will fund 24 technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. Ten of these technologies will take part in the integrated field demonstration that will take place at the Idaho National Engineering Laboratory (INEL) facilities in the summer of 1995. This document is the basic operational planning document for deployment of all BWID projects funded in FY-95. Discussed in this document are the BWID preparations for the INEL integrated field demonstration, INEL research and development (R&D) demonstrations, non-INEL R&D demonstrations, and office research and technical review meetings. Each project will have a test plan detailing the specific procedures, objectives, and tasks of the test. Therefore, information that is specific to testing each technology is intentionally limited in this document.
Date: March 1, 1995
Creator: Stacey, D.E.

Economic feasibility of biochemical processes for the upgrading of crudes and the removal of sulfur, nitrogen, and trace metals from crude oil -- Benchmark cost establishment of biochemical processes on the basis of conventional downstream technologies. Final report FY95

Description: During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change in light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; and (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between biodegraded and biotreated oils. The downstream biotechnological crude oil processing research performed thus far is of laboratory scale and has focused on demonstrating the technical feasibility of downstream processing with different types of biocatalysts under a variety of processing conditions. Quantitative economic analysis is the topic of the present project which investigates the economic feasibility of the various biochemical downstream processes which hold promise in upgrading of heavy crudes, such as those found in California, e.g., Monterey-type, Midway Sunset, Honda crudes, and others.
Date: August 1, 1996
Creator: Premuzic, E.T.

Electric and hybrid vehicle program site operator program. Quarterly progress report, October 1994--December 1994 (First quarter of FY-95)

Description: The DOE Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. Its mission now includes three ma or activity categories: (1) Advancement of Electric Vehicle (EV) technologies, (2) Development of infrastructure elements needed to support significant EV use, and (3) Increasing public awareness and acceptance of EVs. The 13 Program participants, their geographic locations, and the principal thrusts of their efforts are identified in Table ES-1. The EV inventories of each participant are summarized in Table ES-2.
Date: July 1995
Creator: Kiser, D. M. & Brown, H. L.

Endangered species and cultural resources program, Naval Petroleum Reserves in California: Annual report FY95

Description: In FY95, EG and G Energy Measurements, Inc. (EG and G/EM) continued to support efforts to protect endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on Federal properties. Population monitoring activities are conducted annually for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly-star. To mitigate impacts of oil field activities on listed species, 674 preactivity surveys covering approximately 211 hectares (521 acres) were conducted in FY95. EG and G/EM also assisted with mitigating effects from third-party projects, primarily by conducting biological and cultural resource consultations with regulatory agencies. EG and G/EM has conducted an applied habitat reclamation program at NPRC since 1985. In FY95, an evaluation of revegetation rates on reclaimed and non-reclaimed disturbed lands was completed, and the results will be used to direct future habitat reclamation efforts at NPRC. In FY95, reclamation success was monitored on 50 sites reclaimed in 1985. An investigation of factors influencing the distribution and abundance of kit foxes at NPRC was initiated in FY94. Factors being examined include habitat disturbance, topography, grazing, coyote abundance, lagomorph abundance, and shrub density. This investigation continued in FY95 and a manuscript on this topic will be completed in FY96. Also, Eg and G/EM completed collection of field data to evaluate the effects of a well blow-out on plant and animal populations. A final report will be prepared in FY96. Finally, EG and G/EM completed a life table analysis on San Joaquin kit foxes at NPRC.
Date: April 1, 1996

Engineering Research, Development and Technology, FY95: Thrust area report

Description: The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.
Date: February 1, 1996

Functional design criteria for FY 1993-2000 groundwater monitoring wells

Description: The purpose of this revision is to update the Line Item Project, 93-L-GFW-152 Functional Design Criteria (FDC) to reflect changes approved in change control M-24-91-6, Engineering Change Notices (ECNs), and expand the scope to include subsurface investigations along with the borehole drilling. This revision improves the ability and effectiveness of maintaining RCRA and Operational groundwater compliance by combining borehole and well drilling with subsurface data gathering objectives. The total projected number of wells to be installed under this project has decreased from 200 and the scope has been broadened to include additional subsurface investigation activities that usually occur simultaneously with most traditional borehole drilling and monitoring well installations. This includes borehole hydrogeologic characterization activities, and vadose monitoring. These activities are required under RCRA 40 CFR 264 and 265 and WAC 173-303 for site characterization, groundwater and vadose assessment and well placement.
Date: January 1, 1996
Creator: Williams, B.A.

FY-95 technology catalog. Technology development for buried waste remediation

Description: The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.
Date: October 1, 1995

FY94 and FY95 thermal stabilization campaign report

Description: The report provides a synopsis of the FY94/95 Thermal Stabilization Campaign. The FY94 Thermal Stabilization Campaign ran from November 1, 1994 to June 13, 1995 and stabilized 236 items (22 kg) of reactive plutonium bearing material. A total of 49 cans of stabilized material was moved to the vaults for interim storage. While the initial downtime was high, with an Operating Efficiency (OE) of 27% over the first 3 months, the OE improved to 78% during the last 5 months for an overall DE of 58%. The campaign was completed 85 days ahead of schedule thus exceeding the ``Excellent``date for the Performance Base Incentive (PBI) for this campaign by 25 business days.
Date: January 10, 1996
Creator: Lewis, W.S.

FY95 Capital Asset Implementation Plan

Description: The Waste Isolation Division (WID) is committed to providing good stewardship for the capital assets under its operational and physical control. To achieve this goal, the WID has developed the Capital Asset Implementation Plan (CAIP) to continue to implement for FY95 Department of Energy (DOE) Order 4320.2A, Capital Asset Management Process (CAMP). The Order provides policy and elements needed to establish a credible, consistent, auditable, and technically sound process for the DOE to forecast, plan, and budget for capital assets on a functional unit level. The objective of the WIPP CAMP program is to meet the goals of DOE Order 4320.2A in the most effective and efficient manner possible in support of the Waste Isolation Pilot Plant (WIPP) mission. As a result, this CAIP provides a way to implement the CAMP Program using a graded approach. Continued implementation will be accomplished by improving the existing process, and establishing future goals to promote growth for the CAMP Program. The CAIP is issued annually by the WID with quarterly progress reports submitted to the DOE. This document describes the current-year program staffing, roles, responsibilities, funding, and near-term milestones. In addition, the results of past goals are discussed.
Date: December 1994

Geothermal Division Multiyear Plan FY 1992-1996

Description: This administrative report of the Department of Energy is dated December 21, 1990. It is marked ''DRAFT'' as were many of this type of report, most of which were never made ''Final''. It provides contextual elements for program planning, and covers research on Hydrothermal, Geopressured Geothermal, Hot Dry Rock, and Magma Energy systems. (DJE 2005)
Date: December 21, 1990

Hadron blind detector. Final report, FY1994 and 1995

Description: The authors have been developing a novel threshold Cherenkov detector, consisting of a gas radiator followed by a UV photosensitive wire chamber using CsI photocathodes. The photo-detector lies directly in the particle path and is thus required to have single photo-electron sensitivity and yet to be insensitive to the passage of a charged particle. In addition, the detector should be made of low mass material to minimize the effect of multiple scatterings. The proposed threshold Cherenkov counters are called Hadron Blind Detectors (HBDs) because they are blind to low energy hadrons which have lower speed {beta} for given momentum p than that of electrons. HBDs can be used in colliders, especially heavy ion hadron colliders (RHIC, LHC), which have huge {number_sign} of hadrons produced per event, to select electrons by being blind to low-momentum hadrons. The authors have studied two different methods to build HBDs described as follows: (1) windowless configuration; (2) thin window configuration. The authors describe herewith their recent experimental results on HBD research obtained with CsI photo-cathodes and HBD prototype beam testing in 1995.
Date: October 25, 1997
Creator: Chen, M.

Institutional Plan, FY 1995--2000

Description: Sandia recently completed an updated strategic plan, the essence of which is presented in chapter 4. Sandia`s Strategic Plan 1994 takes its direction from DOE`s Fueling a Competitive Economy: Strategic Plan and provides tangible guidance for Sandia`s programs and operations. Although it is impossible to foresee precisely what activities Sandia will pursue many years from now, the strategic plan makes one point clear: the application of our scientific and engineering skills to the stewardship of the nation`s nuclear deterrent will be central to our service to the nation. We will provide the necessary institutional memory and continuity, experience base, and technical expertise to ensure the continued safety, security, and reliability of the nuclear weapons stockpile. As a multiprogram laboratory, Sandia will also continue to focus maximum effort on a broad spectrum of other topics consistent with DOE`s enduring core mission responsibilities: Defense (related to nuclear weapons), Energy, Environment (related to waste management and environmental remediation), and Basic Science.
Date: October 1, 1994

The mixed waste management facility, FY95 plan

Description: This document contains the Fiscal Year 1995 Plan for the Mixed Waste Management Facility (MWMF) at Lawrence Livermore National Laboratory. Major objectives to be completed during FY 1995 for the MWMF project are listed and described. This report also contains a budget plan, project task summaries, a milestone control log, and a responsibility assignment matrix for the MWMF project.
Date: December 1, 1994
Creator: Streit, R.

The Mixed Waste Management Facility monthly report and revised FY95 plan, May 1995

Description: This report contains the project summary, as well as the financial summary for the Mixed Waste Management Facility at Lawrence Livermore National Laboratory. Detailed accomplishments and milestone status are reported in the Task Summaries. The major accomplishments during this reporting period are included the following areas: preliminary design; systems integration; briefings for the Environmental Programs Scientific Advisory Committee; integrated cost/scheduling estimating system; feed preparation; mediated electrochemical oxidation; and molten salt oxidation.
Date: June 1, 1995
Creator: Streit, R.D.