UNT Libraries Government Documents Department - 8,189 Matching Results

Search Results

D-0 South End Cap Calorimeter Cold Test Results

Description: The South endcap calorimeter vessel was moved into Lab A on Sept. 18, 1990. A cooldown of the pressure vessel with liquid nitrogen was performed on Sept. 26 to check the vessel's integrity. With the pressure vessel cold, the insulating vacuum was monitored for leaks. Through out the testing, the insulating vacuum remained good and the vessel passed the test. The cold test was carried out per the procedures of D-Zero engineering note 3740.220-EN-250. The test was very similar to the cold test performed on the Central Calorimeter in October of 1987. The test of the ECS was performed in the same manner using the same equipment as the ECN cold test. Reference D-Zero engineering notes 3740.210-EN-122, 3740.000-EN-I07, and 3740.210-EN-II0 for information about the CC cold test. Reference EN-260 for the results of the ECN cold test. The insulating vacuum space was pumped on while equipment was being connected to the pressure vessel. Two hours after starting to pump with the blower the vacuum space pressure was at about 40 microns. The pumping continued overnight (another 16 hours). In the morning the pressure was 11.5 microns. A rate of rise test was performed. With the pump valved off, the pressure rose to 14 microns within 5 minutes and then rose to 16 microns in 6 hours (0.33 microns/hour). After all connections were made to the pressure vessel, a vacuum pump with an estimated effective pumping speed of about 70 scfm was valved on. After 18 hours, the pressure vessel was down to 270 microns. An additional day of pumping took the pressure down to only 250 microns. A leak was then found and fixed around the seal of the rupture disc. The pump was put on line again. The pressure vessel with pump on line was 27 microns after 16.5 ...
Date: November 26, 1990
Creator: Rucinski, R.

1-Dimensional simulation of thermal annealing in a commercial nuclear power plant reactor pressure vessel wall section

Description: The objective of this work was to provide experimental heat transfer boundary condition and reactor pressure vessel (RPV) section thermal response data that can be used to benchmark computer codes that simulate thermal annealing of RPVS. This specific protect was designed to provide the Electric Power Research Institute (EPRI) with experimental data that could be used to support the development of a thermal annealing model. A secondary benefit is to provide additional experimental data (e.g., thermal response of concrete reactor cavity wall) that could be of use in an annealing demonstration project. The setup comprised a heater assembly, a 1.2 in {times} 1.2 m {times} 17.1 cm thick [4 ft {times} 4 ft {times} 6.75 in] section of an RPV (A533B ferritic steel with stainless steel cladding), a mockup of the {open_quotes}mirror{close_quotes} insulation between the RPV and the concrete reactor cavity wall, and a 25.4 cm [10 in] thick concrete wall, 2.1 in {times} 2.1 in [10 ft {times} 10 ft] square. Experiments were performed at temperature heat-up/cooldown rates of 7, 14, and 28{degrees}C/hr [12.5, 25, and 50{degrees}F/hr] as measured on the heated face. A peak temperature of 454{degrees}C [850{degrees}F] was maintained on the heated face until the concrete wall temperature reached equilibrium. Results are most representative of those RPV locations where the heat transfer would be 1-dimensional. Temperature was measured at multiple locations on the heated and unheated faces of the RPV section and the concrete wall. Incident heat flux was measured on the heated face, and absorbed heat flux estimates were generated from temperature measurements and an inverse heat conduction code. Through-wall temperature differences, concrete wall temperature response, heat flux absorbed into the RPV surface and incident on the surface are presented. All of these data are useful to modelers developing codes to simulate RPV annealing.
Date: November 1, 1994
Creator: Nakos, J. T.; Rosinski, S. T. & Acton, R. U.

A-01 metals in stormwater runoff evaluation

Description: As a part of the A-01 investigation required by the NPDES permit, an investigation was performed to ascertain the concentrations of metals specifically copper (Cu), lead (Pb), and zinc (Zn) in stormwater being discharged through the outfall. This information would indicate whether all water being discharged would have to be treated or if only a portion of the discharged stormwater would have to be treated. A study was designed to accomplish this. The first goal was to determine if the metal concentrations increased, decreased, or remained the same as flow increased during a rain event. The second goal was to determine if the concentrations in the storm water were due to dissolved. The third goal was to obtain background data to ascertain if effluent credits could be gained due to naturally occurring metals.Samples from this study were analyzed and indicate that the copper and lead values increase as the flow increases while the zinc values remain essentially the same regardless of the flow rate. Analyses of samples for total metals, dissolved metals, TSS, and metals in solids was complicated because in all cases metals contamination was found in the filters themselves. Some conclusions can be derived if this problem is taken into account when analyzing the data. Copper concentrations in the total and dissolved fractions as well as the TSS concentrations followed the hydrograph at this outfall but the copper in solids concentration appeared to peak in the first flush and decline to nondetectable rapidly over the course of the storm event. Lead was present in the total analysis but not present in the dissolved fraction or the solids fraction of the samples. The data for zinc was interesting in that the dissolved fractions were higher than the total fraction in three out of four samples. This is probably due ...
Date: November 6, 1997
Creator: Eldridge, L. L.

1: Redox chemistry of bimetallic fulvalene complexes; 2: Oligocyclopentadienyl complexes

Description: The electrochemistry of the heterobimetallic complexes (fulvalene)WFe(CO){sub 5} (30) and (fulvalene)WRu(CO){sub 5} (31) has been investigated. Compound 30 is reduced in two one-electron processes, and this behavior was exploited synthetically to prepare a tetranuclear dimer by selective metal reduction. Complex 31 displayed a distinction between the metals upon reoxidation of the dianion, allowing the formation of a dimer by selective metal anion oxidation. The redox behavior of 30 led to an investigation of the use of electrocatalysis to effect metal-specific ligand substitution. It was found that reduction of 30 with a catalytic amount of CpFe(C{sub 6}Me{sub 6}) (97) in the presence of excess P(OMe){sub 3} or PMe{sub 3} led to the formation of the zwitterions (fulvalene)[W(CO){sub 3}{sup {minus}}][Fe(CO)PR{sub 3}{sup +}] (107, R = P(OMe){sub 3}; 108, R = PMe{sub 3}). Compound 31 also displayed unique behavior with different reducing agents, as the monosubstituted zwitterion (fulvalene)[W(CO){sub 3}{sup {minus}}][Ru(CO){sub 2}(PMe{sub 3}){sup +}] was obtained when 97 was used while the disubstituted complex (fulvalene) [W(CO){sub 3}{sup {minus}}] [Ru(CO)(PMe{sub 3}){sub 2}{sup +}] was produced when Cp*Fe(C{sub 6}Me{sub 6}) was the catalyst. Potential synthetic routes to quatercyclopentadienyl complexes were also explored. Various attempts to couple heterobimetallic fulvalene compounds proved to be unsuccessful. 138 refs.
Date: November 1, 1993
Creator: Brown, D. S.

2-D Axisymmetric Line Transport

Description: The methods used in the ALTAIR code for computing the transfer of spectral line radiation in two-dimensional axially-symmetric geometry are described. ALTAIR uses a variable-Eddington-tensor approach, in which the transfer equation of non-coherent line scattering is written in moment form, and the moments are closed with an assumed tensor relating the monochromatic pressure tensor and energy density; this Eddington tensor is obtained self-consistently using an accurate angle-dependent solution of the transfer equation. The finite element method for solving the moment system, and the discontinuous finite element method for solving the S{sub n} equation of transfer are described. Two applications of the method are discussed: line formation in uniform cylinders with different length-diameter ratios, and monochromatic transfer on an irregular x-y mesh (the Mordant test problem). 13 refs., 2 figs.
Date: November 20, 1990
Creator: Castor, John I.; Dykema, Pieter G & Klein, Richard I.

2-D electric fields and drifts near the magnetic separatrix in divertor tokamaks

Description: A 2-D calculation is presented for the transport of plasma in the edge region of a divertor tokamak solving continuity, momentum, and energy balance fluid equations. The model uses anomalous radial diffusion, including perpendicular ion momentum, and classical cross-field drifts transport. Parallel and perpendicular currents yield a self-consistent electrostatic potential on both sides of the magnetic separatrix. Outside the separatrix, the simulation extends to material divertor plates where the incident plasma is recycled as neutral gas and where the plate sheath and parallel currents dominate the potential structure. Inside the separatrix, various radial current terms - from viscosity, charge-exchange and poloidal damping, inertia, and {triangledown}B - contribute to the determining the potential. The model rigorously enforces cancellation of gyro-viscous and magnetization terms from the transport equations. The results emphasize the importance of E x B particle flow under the X-point which depends on the sign of the toroidal magnetic field. Radial electric field (E{sub y}) profiles at the outer midplane are small with weak shear when high L-mode diffusion coefficients are used and are large with strong shear when smaller H-mode diffusion coefficients are used. The magnitude and shear of the electric field (E{sub y}) is larger both when the core toroidal rotation is co-moving with the inductive plasma current and when the ion {triangledown}B-drift is towards the single-null X-point.
Date: November 15, 1998
Creator: Mattor, N.; Porter, G. D.; Rognlien, T. D. & Ryutov, D. D.

2-D linear motion system. Innovative technology summary report

Description: The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However, for areas over approximately ...
Date: November 1, 1998

3-D Computations and Measurements of Accelerator Magnets for the APS

Description: The Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), requires dipole, quadrupole, sextupole, and corrector magnets for each of its circular accelerator systems. Three-dimensional (3-D) field computations are needed to eliminate unwanted multipole fields from the ends of long quadrupole and dipole magnets and to guarantee that the flux levels in the poles of short magnets will not cause saturation. Measurements of the magnets show good agreement with the computations.
Date: 1993-11~
Creator: Turner, L. R.; Kim, S. H. & Kim, K.

3-D Measurement of Deformation Microstructure of Al(0.2%)Mg Using Submicron Resolution White X-Ray Microbeams

Description: We have used submicron-resolution white x-ray microbeams on the MHATT-CAT beamline 7-ID at the Advanced Photon Source to develop techniques for three-dimensional investigation of the deformation microstructure in a 20% plane strain compressed Al(0.2%)Mg tri-crystal. Kirkpatrick-Baez mirrors were used to focus white radiation from an undulator to a 0.7 x 0.7 {micro}m{sup 2} beam that was scanned over bi- and tri-crystal regions near the triple-junction of the tri-crystal. Depth resolution along the x-ray microbeam of less than 5 microns was achieved by triangulation to the diffractibn source point using images taken at a series of CCD distances from the microbeam. Computer indexing of the deformation cell structure in the bi-crystal region provided orientations of individual subgrains to {approximately}0.01 degrees, making possible detailed measurements of the rotation axes between individual cells.
Date: November 29, 1999
Creator: Larson, B. C.; tamura, N.; Chung, J.-S.; Ice, G. E.; Budai, J. D.; Tischler, J. Z. et al.

3 Dimensional radiation transport in dispersive media

Description: In plasmas the collective motion of free electrons affects the propagation of radiation by bending the light ray trajectory. The closer the light wave frequency is to the electron plasma frequency in value, the more pronounced the effect. We will present the results of radiation transport calculations in 3 spatial dimensions in the refractive plasma environment and compare the calculation to one done where the ray bending has been neglected (straight line ray paths). We also present the numerical method used for the refractive transport. 4 refs., 5 figs.
Date: November 1, 1990
Creator: Mayle, R.W.

5 MeV Mott polarimeter for rapid precise electron beam polarization measurements

Description: Low energy (E{sub k} = 100 keV) Mott scattering polarimeters are ill-suited to support operations foreseen for the polarized electron injector at Jefferson Lab. One solution is to measure the polarization at 5 MeV where multiple and plural scattering are unimportant and precision beam monitoring is straightforward. The higher injector beam current offsets the lower cross-sections; measured rates scale to 1 kHz/{mu}A with a 1 {mu}m thick gold target foil.
Date: November 1, 1997
Creator: Price, J.S.; Poelker, B.M. & Sinclair, C.K.

THE 15 LAYER SILICON DRIFT DETECTOR TRACKER IN EXPERIMENT 896.

Description: Large linear silicon drift detectors have been developed and are in production for use in several experiments. Recently 15 detectors were used as a tracking device in BNL-AGS heavy ion experiment (E896). The detectors were successfully operated in a 6.2 T magnetic field. The behavior of the detectors, such as drift uniformity, resolution, and charge collection efficiency are presented. The effect of the environment on the detector performance is discussed. Some results from the experimental run are presented. The detectors performed well in an experimental environment. This is the first tracking application of these detectors.
Date: November 8, 1998
Creator: PANDY,S.U.

The 16 August 1997 Novaya Zemlya seismic event as viewed from GSN stations KEV and KBS

Description: Using current and historic seismic records from Global Seismic Network stations KEV and KBS, the authors find that S minus P arrival time comparisons between nuclear explosions and the 16 August 1997 seismic event (m{sub b} {approx} 3.6) from near Novaya Zemlya clearly indicate that (relative to KEV) the 16 August event occurred at least 80 km east of the Russian test site. Including S minus P arrival times from KBS constrains the location to beneath the Kara Sea and in good agreement with previously reported locations, over 100 km southeast of the test site. From an analysis of P{sub n}/S{sub n} waveform ratios at frequencies above 4 Hz, they find that the 16 August event falls within the population of regional earthquakes and is distinctly separated from Novaya Zemlya and other northern Eurasian nuclear explosion populations. Thus, given its location and waveform characteristics, they conclude the 16 August event was an earthquake. The 16 August event was not detected at teleseismic distances, and thus, this event provides a good example of the regional detection, location, and identification efforts that will be required to monitor the Comprehensive Test Ban Treaty below m{sub b} {approx} 4.
Date: November 1, 1997
Creator: Hartse, H.E.

30-60 MHz FWCD system on DIII-D: Power division, phase control and tuning for a four-element antenna array

Description: The 2 MW Fast Wave Current Drive system on DIII-D is intended to provide a near-term demonstration of up to 0.3 MA of current driven by the fast wave. The system used to drive the four element phased antenna array which produces the required directional spectrum is presented. This system must be able to cope with strong coupling between antenna elements and the time-varying plasma load seen by the antennas. Computer modelling shows that this system should be able to maintain a directional spectrum at full power under most anticipated load conditions. 5 refs., 1 fig.
Date: November 1, 1991
Creator: Pinsker, R. I.; Mayberry, M. J.; Petty, C. C.; Cary, W. P.; Pusl, J.; Remsen, D. et al.

30-60 MHz FWCD system on DIII-D: Power division, phase control and tuning for a four-element antenna array

Description: The 2 MW Fast Wave Current Drive system on DIII-D is intended to provide a near-term demonstration of up to 0.3 MA of current driven by the fast wave. The system used to drive the four element phased antenna array which produces the required directional spectrum is presented. This system must be able to cope with strong coupling between antenna elements and the time-varying plasma load seen by the antennas. Computer modelling shows that this system should be able to maintain a directional spectrum at full power under most anticipated load conditions. 5 refs., 1 fig.
Date: November 1, 1991
Creator: Pinsker, R.I.; Mayberry, M.J.; Petty, C.C.; Cary, W.P.; Pusl, J.; Remsen, D. (General Atomics, San Diego, CA (United States)) et al.

45-Day deliverable for Tank 241-BX-105 Auger samples, risers 2 and 6

Description: Two auger samples from single-shell tank 241-BX-105 (BX-105) were extruded, broken down, and analyzed for DSC, TGA, and total alpha as prescribed. Analytical results were tracked and reported using the laboratory information management system known as LabCore. This is the final report for the fiscal year 1995 BX-105 auger sample characterization effort. Included are copies of the differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA) scans as requested. Also included is a copy of any immediate notification documentation, chain of custody forms, the hot cell work plan, extruded segment [auger] description sheets, and total alpha data.
Date: November 16, 1994
Creator: Bell, K. E.

A 100 MVA generator utilizing high temperature superconducting windings -- design assessment & component development. Final report

Description: The operation of a high temperature superconducting generator rotor using closed-cycle refrigeration to indirectly cool the field windings was considered to be the best choice for an HTS application. The SPI program proposed to achieve the following goals: In Task 1 a 100 MVA generator with a HTS rotor field winding would be designed. An energy and economic benefits analysis was to be a key part of the program. In addition, the generator/grid interactions were to be modeled. Concurrently, Task 2 was to include further development of Bi-2223 silver-clad tape as well as an alternate Tl-1223 conductor, manufacture of 3,000 meters of tape, and development and fabrication of a prototype field coil. Details of progress have been reported in the quarterly status reports and summarized in the final reports on the tasks. Therefore this report will give a review of the original goals of each task and summary of results for each.
Date: November 1, 1996
Creator: Lay, K.

105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

Description: Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.
Date: November 4, 1999
Creator: Packer, M. J.

110 GHz ECH on DIII-D: System overview and initial operation

Description: A new high power electron cyclotron heating (ECH) system has been introduced on D3-D. This system is designed to operate at 110 GHz with a total output power of 2 MW. The system consists of four Varian VGT-8011 gyrotrons, (output power of 500 kW), and their associated support equipment. All components have been designed for up to a 10 second pulse duration. The 110 GHz system is intended to further progress in rf current drive experiments on D3-D when used in conjunction with the existing 60 GHz ECH (1.6 MW), and the 30--60 MHz ICH (2 MW) systems. H-mode physics, plasma stabilization experiments and transport studies are also to be conducted at 110 GHz. The present system design philosophy was based on experience gained from the existing 60 GHz ECH system. The consequences of these design decisions will be addressed as will the actual performance of various 110 GHz components.
Date: November 1, 1991
Creator: Cary, W. P.; Allen, J. C.; Callis, R. W.; Doane, J. L.; Harris, T. E.; Moeller, C. P. et al.

110 GHz ECH on DIII-D: System overview and initial operation

Description: A new high power electron cyclotron heating (ECH) system has been introduced on D3-D. This system is designed to operate at 110 GHz with a total output power of 2 MW. The system consists of four Varian VGT-8011 gyrotrons, (output power of 500 kW), and their associated support equipment. All components have been designed for up to a 10 second pulse duration. The 110 GHz system is intended to further progress in rf current drive experiments on D3-D when used in conjunction with the existing 60 GHz ECH (1.6 MW), and the 30--60 MHz ICH (2 MW) systems. H-mode physics, plasma stabilization experiments and transport studies are also to be conducted at 110 GHz. The present system design philosophy was based on experience gained from the existing 60 GHz ECH system. The consequences of these design decisions will be addressed as will the actual performance of various 110 GHz components.
Date: November 1, 1991
Creator: Cary, W.P.; Allen, J.C.; Callis, R.W.; Doane, J.L.; Harris, T.E.; Moeller, C.P. et al.

200 Area TEDF interface control document

Description: Because the TEDF does not have any treatment or retention capacity, strict control at the generator interface is essential to operate the TEDF in compliance with good engineering practices, Hanford site requirements, and the 216 Discharge Permit. The information in the Interface Control Document (ICD) forms the basis of understanding between all parties involved in the TEDF; DOE, WHC, and the generating facilities. The ICD defines the controlling document hierarchy; LEF, and generator responsibilities; monitoring and sampling requirements; and specifies the TEDF/Generator Interface points.
Date: November 15, 1994
Creator: Brown, M. J. & Hildebrand, R. A.

241-SY modular exhauster pad analysis

Description: The purpose of this document is to show the analytical results which were reached in analyzing the new 241-SY modular exhauster concrete pad and retaining wall. The analysis covers wind loading (80 mph), an equivalent static load due to a seismic event, and from those two results, a determination of the pad thickness and the location and size of reinforcement bar was made. The analysis of the exhauster assembly and sampling cabinet evaluated overturning of the assemblies as a whole. An analysis was then performed for the bolting requirements for these two assemblies. The reason why this was broken up into components was to determine if the individual components could take the load exerted by the workset case loading condition, whether it be wind or seismic. The retaining wall that will be located near the new concrete pad was also analyzed. The retaining wall was evaluated to determine the area of reinforcement required, the location of reinforcement, as well as the mass and configuration of the wall to prevent overturning or sliding. The wall was considered Non-Safety Class 4. Additional piping was required to tie-in the new exhauster to the existing primary ventilation ductwork. The design for the tie-in includes two butterfly valves, a tee fitting, elbows, flanges, straight pipe sections, and two new pipe supports to accommodate the additional weight. The valves will enable the new and existing exhausters to be isolated independently. The ductwork, couplings, and supports were analyzed for structural adequacy given Safety Class 2 loads.
Date: November 16, 1994
Creator: Kriskovich, J. R.