UNT Libraries Government Documents Department - Browse

ABOUT BROWSE FEED

D0 Cryo-Corner Piping Flexibility Analysis

Description: Table 1 indicates that the stiffest line is the cryogenic vent line while the most flexible line is the 6 inch insulating vacuum line. The table also shows that the four remaining lines are roughly of the same stiffness. This follows closely with the experience of installing the U-tubes in the assembly hall. The vent line was by far the stiffest, while the other lines are comparitively more flexible. However, the value for the LAr line is misleading. It is as flexible as the other 1 1/2 x 3 lines. Using this as a basis, the collision hall connections should be slightly more stiff, but not appreciably. The vent line represents the only anticipated 'difficulty'. Provided that the building piping is constructed to reasonable tolerances, there should be no need to modify the existing U-tubes for use in the Collision hall. The analysis makes many assumptions which are not completely valid. For example, the inner line is much more flexible than the table indicates. Thus the analysis should not be taken as an absolute measure of the amount of force necessary to deflect the lines. The analysis does provide a means of comparison between individual lines and between the assembly hall and collision hall. The last column in tables 1 and 2 indicate which lines are the stiffest comparatively. In addition, by comparing the stiffness of each line in the collision hall with the corresponding line in the assembly hall, a qualitative assesment can be made as to whether the lines in the collision hall are flexible enough.
Date: August 20, 1991
Creator: Clark, D.

D0 Cryo Instrument Air Backup System

Description: The D0 instrument air system for cryo controls has an emergency backup supply of nitrogen gas. The backup system consists of a high pressure tube trailer (38 tubes - 2400 psig MAWP), piping, valves, regulators and pressure monitoring instrumentation. The trailer is located south of DAB alongside the LN{sub 2} Dewar. Fixed piping ties to the trailer with a flex-hose. The piping follows the cryo piping bridge entering the south wall of DAB. where it passes through the pipe chase and into the cryo pump room (Rm 315). The high pressure gas is regulated down to 90 psig before tying into the compressor supplied instrument air system. Check valves are installed at the tee for the primary air and the backup N{sub 2}. Normal operating pressure for instrument air is 100-120 psig. With the backup supply pressure set to 90 psig, 'emergency air' is supplied whenever primary air pressure falls below 90 psig. There are two additional, outside connections to the system: one is a connection for repumping the trailer after a minimum backup volume is reached and the other is an auxiliary flex-hose connection for another trailer. All manual valves at system connections will be locked closed when not in use. The system's maximum allowable working pressure (MAWP) is 2400 psi, which is the trailer MAWP. All piping and components have a minimum 2400 psi working pressure. Actual component working pressures are included in the component list.
Date: November 20, 1990
Creator: Urbin, J.

D0 Cryo System Control System Autodialer

Description: The DO cryogenic system is controlled by a TI565-PLC based control system. This allows the system to be unmanned when in steady state operation. System experts will need to be contacted when system parameters exceed normal operating points and reach alarm setpoints. The labwide FIRUS system provides one alarm monitor and communication link. An autodialer provides a second and more flexible alarm monitor and communication link. The autodialer monitors contact points in the control system and after receiving indication of an alarm accesses a list of experts which it calls until it receives an acknowledgement. There are several manufacturers and distributors of autodialer systems. This EN explains the search process the DO cryo group used to fmd an autodialer system that fit the cryo system's needs and includes information and specs for the unit we chose.
Date: April 17, 1990
Creator: Urbin, J.

D0 Cryo System ODH and Cryo Alarm System Response

Description: The D0 Cryo System is monitored by a computerized process control system and an ODH safety system. During steady state operations the cryo system will be unmanned and system experts will depend on communication systems for notification of system problems. The FIRUS system meets the minimum communication requirement and is supplemented with an autodialer which attempts to contact cryo operators by pager or phone. The RD/Safety Department requires the ODH monitor system to be connected to the labwide FIRUS system. which enables the Communications Center to receive alarms and notify the proper experts of the condition. The ODH system will have two alarm points. One for an ODH alarm and one for a system trouble alarm. The autodialer system has replaced a former cryo operations summation alarm point in the FIRUS system. This has freed space on the FIRUS system and has allowed the cryo experts more flexibility in setting up their own communication link. The FIRUS and the autodialer systems receive alarms and access lists of experts to call for notification of problems. Attempts to contact these experts will continue until the alarm or alarms is acknowledged.
Date: April 5, 1990
Creator: Urbin, J.; Dixon, K. & /Fermilab

D0 Cryo Ventilation Fan Controls and Monitoring

Description: This engineering note describes how exhaust fan 6 (EF-6) and exhaust fan 7 (EF-7) are controlled and monitored. Since these two fans are a vital link in the ODH safety system, they will be monitored, controlled and periodically operated by the programmable logic controller (PLC). If there should be a fault in the ventilation system, the PLC will print a warning message to the cryo control room printer and flash a descriptive warning on the ODH/ventilation graphics page. This fault is also logged to the Xpresslink graphics alarm page and to an alarm history hard disk file. The ventilation failure is also an input to the auto dialer which will continue it's automatic sequence until acknowledged. EF-6 delivers 13000 C.F.M. and is considered emergency ventilation. EF-7 delivers 4500 C.F.M. and will run 24 hrs a day. Both ventilation fans are located in an enclosed closet in the TRD gas room. Their ductwork, both inlets and outlets run along side the pipe chase, but are separated by an airtight wall. Their combination motor control starter cabinets are located in the TRD room in plain visible sight of the fans with the closet door open. The fans have signs that state they are automatically controlled and can energize at any time.
Date: February 15, 1990
Creator: Markley, D.

D0 Cryogenic Auto Dialing Alarm System

Description: The Automatic Dialing system purchased by D0 is intended to help make the D0 cryogenic system operate unattended by cryogenic operating personnel. The auto dialer is completely programmable and is voice synthesized. The auto dialer was purchased with 32 bistable inputs, but is expandable to 64 bistable inputs with the purchase of more electronic cards at an approximate cost of $260 per card (8 bistable inputs). The auto dialer also has the capability for analog inputs, analog outputs, and bistable outputs none of which D0 uses or intends to use. The auto dialer can be called on its operating phone line to describe current alarms with the proper password. The Auto Dialer can dial lab extensions, lab pagers, and any number outside the lab. It cannot dial a long distance pager. The auto dialer monitors alarms and alarm conditions via the T1565 PLC, upon an alarm condition it initiates a phone calling sequence of preprogrammed lists with assigned priorities. When someone is reached, the auto dialer describes the individual alarm it is calling for, by a preprogrammed set of words for that individual alarm, spoken by a female voice. The called person then has a chance to acknowledge the alarm over the telephone, if the alarm is not acknowledged the auto dialer will disconnect and call the next person on the list. The auto dialer will continue to cycle through the list until it is acknowledged, reset, or the alarm condition no longer exists.
Date: August 3, 1992
Creator: Markely, D.

D0 Cryogenic Controls I/O Base Power Distribution

Description: The D0 cryogenic control system has 3 I/O bases and 1 25 amp 24vdc power supply. Each I/O base uses both 120 vac and 24 vdc. There are as many as 14 modules in each base, depending on what type of module it may require ac or dc. Then there are as many as 32 devices (instrumentation) per module. There is a power distribution network that provides power to this system. It was configured so that no conductors, devices, or components could carry or receive more current or voltage than they could safely handle. This is done to protect both personel and components from fire, heat, and electric shock.
Date: March 9, 1991
Creator: Markley, D.

D0 Cryogenic In-Line Filters

Description: The DO cryogenic system utilizes liquid argon (serving as the detector ionizing medium) and liquid nitrogen (refrigerant for the argon). In order to keep these fluids pure and minimize the likelihood of plugged instrumentation due to contamination, in-line filters will be installed on the following lines (see Cryogenic Flow Diagram, drawing 3740-ME-222394): 445LN, 412LN, 447LA, 427LA. and 422GA. The lines referred to by these labels are argon dewar LN2 supply, cryostat LN2 supply, LAr dewar fill/drain line, cryostat LAr fill/drain line, and dewar-to-cryostat argon gas line, respectively. Five filters are required. As of this writing, one has been built and tested. The others are to be identical in concept and construction.
Date: October 4, 1988
Creator: Fuerst, J. D.

D0 Cryogenic System Operator Training

Description: D0 is a collider detector. It will be operating and doing physics at the same time as CDP, therefore it has been decided to train CDP operators to operate and respond to the D0 cryogenic control system. A cryogenic operator will be required to be in residence at D0, during the cooldown and liquid Argon fill of any of the calorimeters. The cryogenic system at D0 is designed to be unmanned during steady state operation. CDP operations has 2 man cryogenic shifts 24 hours a day. It is intended that CDP operators monitor the D0 cryogenic systems, evaluate and respond to alarms, and notify a D0 cryo expert in the event of an unusual problem. A D0 cryogenic system view node has been installed at CDP to help facilitate these goals. It should be noted that even though the CDP view node is a fully operational node it is intended that it be more of an information node and is therefore password protected. The D0 cryo experts may reassess the use of the CDP node at a later date based on experience and operating needs. This engineering note outlines the format of the training and testing given to the CDP operators to make them qualified D0 operators.
Date: November 30, 1991
Creator: Markley, D.

D0 Cryogenic System Superconducting Solenoid Platform I/O

Description: The Dzero detector is scheduled for a major upgrade between 1996 and 1999. This note describes the specifications and configuration of the physical Input/Output devices and instrumentation of the 2 Tesla Superconducting Solenoid. The Solenoid and the VLPC cryostats both reside on the detector platform and are cooled by the Dzero Helium Refrigerator. The cryogenic process control s for these two components will be an extension of the TI565 programmable logic controller system used for other Dzero cryogenic controls. Two Input/Output Bases will be installed on the Dzero detector platform near the cryo corner. These I/O bases will handle all the sensor input and process control output devices from the Solenoid and VLPC cryostats. Having the I/O bases installed on the detector platform makes the connecting cabl ing to the platform much easier . All the instruments are wired directly to the I/O base. The bases have only one communications network cabl e that must be routed off the platform to the South side of the Dzero building.
Date: October 9, 1997
Creator: Markley, D. & /Fermilab

D0-D bar 0 mixing and rare charm decays

Description: We review the current status of flavor-changing neutral currents in the charm sector. We focus on the standard-model predictions and identify the main sources of theoretical uncertainties in both D{sup 0} - {bar D}{sup 0} mixing and rare charm decays. The potential of these observables for constraining short-distance physics in the standard model and its extensions is compromised by the presence of large nonperturbative effects. We examine the possible discovery windows in which short-distance physics can be tested and study the effects of various extensions of the standard model. The current experimental situation and future prospects are reviewed.
Date: October 8, 2003
Creator: Burdman, Gustavo & Shipsey, Ian

D0 - D0bar Mixing: An Overview

Description: Recently, the B factory experiments BABAR and Belle as well as the CDF collaboration found evidence for mixing in the D meson system. The current status (beginning of summer 2008) of the experimental results of D{sup 0} mixing is summarized. In this paper, we present an overview of D{sup 0} mixing. After an introduction to the charm mixing phenomenology and analysis techniques, results of the mixing parameters and CP violation as related to mixing are summarized. They are obtained from hadronic two-body, multi-body final states and from quantum correlated D{sup 0} decays of the experiments BABAR, Belle, Cleo and CDF. Mixing results from semileptonic D{sup 0} decays can be found elsewhere.
Date: November 14, 2011
Creator: Marks, Jorg & U., /Heidelberg

D0 data handling operational experience

Description: We report on the production experience of the D0 experiment at the Fermilab Tevatron, using the SAM data handling system with a variety of computing hardware configurations, batch systems, and mass storage strategies. We have stored more than 300 TB of data in the Fermilab Enstore mass storage system. We deliver data through this system at an average rate of more than 2 TB/day to analysis programs, with a substantial multiplication factor in the consumed data through intelligent cache management. We handle more than 1.7 Million files in this system and provide data delivery to user jobs at Fermilab on four types of systems: a reconstruction farm, a large SMP system, a Linux batch cluster, and a Linux desktop cluster. In addition, we import simulation data generated at 6 sites worldwide, and deliver data to jobs at many more sites. We describe the scope of the data handling deployment worldwide, the operational experience with this system, and the feedback of that experience.
Date: August 11, 2003
Creator: al., Lee Lueking et

D0 Decomissioning : Storage of Depleted Uranium Modules Inside D0 Calorimeters after the Termination of D0 Experiment

Description: Dzero liquid Argon calorimeters contain hadronic modules made of depleted uranium plates. After the termination of DO detector's operation, liquid Argon will be transferred back to Argon storage Dewar, and all three calorimeters will be warmed up. At this point, there is no intention to disassemble the calorimeters. The depleted uranium modules will stay inside the cryostats. Depleted uranium is a by-product of the uranium enrichment process. It is slightly radioactive, emits alpha, beta and gamma radiation. External radiation hazards are minimal. Alpha radiation has no external exposure hazards, as dead layers of skin stop it; beta radiation might have effects only when there is a direct contact with skin; and gamma rays are negligible - levels are extremely low. Depleted uranium is a pyrophoric material. Small particles (such as shavings, powder etc.) may ignite with presence of Oxygen (air). Also, in presence of air and moisture it can oxidize. Depleted uranium can absorb moisture and keep oxidizing later, even after air and moisture are excluded. Uranium oxide can powder and flake off. This powder is also pyrographic. Uranium oxide may create health problems if inhaled. Since uranium oxide is water soluble, it may enter the bloodstream and cause toxic effects.
Date: September 21, 2011
Creator: Sarychev, Michael & /Fermilab

D0 Detector Assemble Hall Platform Oxygen Deficiency Hazard Analysis

Description: Liquid cryogens, released and warming to atmosphere conditions, expand to, on average, seven hundred times their liquid volume, and displace vital atmospheric oxygen. An oxygen deficiency hazard analysis assesses the increased risk to personnel in areas containing cryogenic systems. The D0 detector platform area ODH analysis has been approached four different ways using established methods. In each case, the analysis shows the platform area to be ODH class 0 as equipped (with ventilation fans) and requiring no special safety provisions. System designers have provided for a reduced oxygen level detection and warning system as well as emergency procedures to address fault conditions. The Oxygen Deficiency Hazard of any particular area is defined by these parameters: the nature of the accidental supply of inert gas (probability of occurrence and quantity then released), the area's volume, the area's ventilation rate, and to a small degree the elevation of the area. Once this information is assembled, the ODH classification can be determined through standardized calculations. The platform area under the D0 detector contains much of the cryogenic and gas system piping necessary for the D0 experiment. Prior to moving the detector into the Collision Hall, the liquid argon calorimeters are cooled down and operated in the Assembly Hall. The first phase of this operation involved the cooldown of the Central Calorimeter, which was done in February 1991. This engineering note assesses the increased risk to personnel in the platform level to a reduced oxygen atmosphere during the cool down and subsequent operation of the calorimeters in the Assembly Hall. In addition, it outlines the steps taken to warn personnel of an emergency and to direct the subsequent evacuation. This note analyses only the Assembly Hall area. A similar engineering note, EN-332, covers the analysis of the Collision Hall area.
Date: January 29, 1991
Creator: Clark, D.; Michael, J. & /Fermilab

The D0 detector at Fermilab: Recent results and future plans

Description: The D0 Collaboration at Fermilab consists of about 400 physicists from institutions in 8 countries. The detector built by this collaboration has three main parts, a Central Detector, a liquid Argon - Uranium calorimeter and an outer muon detector. A very successful run was completed in May of 1993; analyses of this data are nearing completion and several physics results have already been presented. Another run started in January of 1994 and is still continuing. Some of the results from the first run, prospects for forthcoming physics results and plans for detector upgrades will be presented in this paper.
Date: January 1, 1995
Creator: Hoftun, J.S.

The D0 detector at the Fermilab tevatron in run 2

Description: The D0 (DZERO) Detector at Fermilab has been collecting data since March 1, 2001. The detector has undergone an extensive upgrade to participate in the Run 2 data taking. The design of the detector meets the requirements of the high luminosity environment provided by the accelerator. This paper describes the upgraded detector subsystems and gives an outline of the physics potentials associated with the upgrade.
Date: March 12, 2002
Creator: Parashar, Neeti

D0 Detector Collision Hall Oxygen Deficiancy Hazard Analysis

Description: EN-258, D0 Platform ODH Analysts. provided the oxygen deficiency hazard analysts for the D0 detector in the Assembly Hall. This note covers the same analysis. but revised for the Collision Hall. Liquid cryogens. released and warming to atmosphere conditions, expand to, on average, seven hundred times their liquid volume, and displace vital atmospheric oxygen. An oxygen deficiency hazard analysis assesses the increased risk to personnel in areas containing cryogenic systems. The D0 detector Collision Hall ODH analysis has been approached five different ways using established methods. If the low beta quad magnets are powered, and the exhaust rate is below 4220 scfm, the area is ODH class 1. In any other case, the analysis shows the area to be ODH class 0 as equipped (with ventilation fans) and requiring no special safety provisions. System designers have provided for a reduced oxygen level detection and warning system as well as emergency procedures to address fault conditions.
Date: August 6, 1992
Creator: Wu, J. & /Fermilab

The D0 detector upgrade

Description: The Fermilab collider program is undergoing a major upgrade of both the accelerator complex and the two detectors. Operation of the Tevatron at luminosities upwards of ten time that currently provided will occur in early 1999 after the commissioning of the new Fermilab Main Injector. The D0 upgrade program has been established to deliver a detector that will meet the challenges of this environment. A new magnetic tracker consisting of a superconducting solenoid, a silicon vertex detector, a scintillating fiber central tracker, and a central preshower detector will replace the current central tracking and transition radiation chambers. We present the design and performance capabilities of these new systems and describe results from physics simulations that demonstrate the physics reach of the upgraded detector.
Date: February 1, 1995
Creator: Bross, A.D.

D0-EC RTD Wiring Layout (North Calorimeter)

Description: The temperature of the North End-Calorimeter of the D-Zero detector is to be monitored by several RTD temperature sensors. The location and other important information pertaining to each individual RTD is included in the following tables, which are grouped by bundle number. There are mne 60 pIll port connectors. Each connector corresponds to a bundle of twisted pairs. Twisted pairs, of one of eight colors along with either a black or white wire, run to 10-pin connectors which have a mate on the module or cryostat wall. In general, all 60 pins, or all 10 pins are not used. The color scheme of the wires was designed so that all the twisted pairs with white run West from the instrumentation port, and twisted pairs with black run East. This scheme proved to be very successful and efficient during the installation process. After being installed, every RTD connection was checked and their corresponding resistances were recorded by Jerry Blazey. All the RTD's tested successfully, except for 2. The 2 dead RTD's were: Channel 17 on bundle 4, which is located on the front of MH module 8L; and Channel 13 on bundle 5, which is located on the Bottom of the Middle Coarse Plate of the IH.
Date: June 4, 1991
Creator: Primdahl, K. & /Fermilab

D0-EC RTD Wiring Layout (South Calorimter)

Description: The temperature of the South End-Calorimeter of the D-Zero detector is to be monitored by several RTD temperature sensors. The location and other important information pertaining to each individual RTD is included in the following tables, which are grouped by bundle number. There are nine 60 pin port connectors. Each connector corresponds to a bundle of twisted pairs. Twisted pairs, of one of eight colors along with either a black or white wire, run to 10-pin connectors which have a mate on the module or cryostat wall. In general, all 60 pins, or all 10 pins are not used. The color scheme of the wires was deSigned so that all the twisted pairs with white run West from the instrumentation port, and twisted pairs with black run East. This scheme proved to be very successful and efficient during the installation process. After being installed, every RTD connection was checked and their corresponding resistances were recorded by Jerry Blazey. All the ATD's tested successfully, except for 4. The 4 dead RTD's were: Channel 12 on bundle 1, which is located on the back of OH module 7R; Channel 19 on bundle 4, which is located on the back of MH module 5L; Channel 9 on bundle 5, which is located on the IH fine 2-inch strap; and Channel 25 on bundle 7, which is located on the east strongback.
Date: August 6, 1991
Creator: Leibfritz, J.R. & /Fermilab

D0 Experimental Area Emergency Backup Power and Generator Test

Description: The DO experimental area has a generator designated as emergency power. This generator provides power for critical loads and starts automatically upon loss of commercial power. This note concerns the testing of this generator. A list of loads is attached to this note. One of the loads on the emergency power grid is a 10KVA Uninterruptable Power Supply(UPS). The UPS powers the cryogenic controls and Oxygen deficiency hazard equipment(ODH) and has a minimum rating of 20 minutes while on its batteries(to cover the transfer time to/from the emergency generator). Jan 23,1991 at 1640 hrs this system was tested under the supervision of the Terry Ross, Marv Johnson, Dan Markley, Kelly Dixon, and John Urbin. The power feeder to the emergency power grid at DO was disconnected. The generator responded immediately and was supplying power to the emergency power grid in less than 10 seconds. During the 10 seconds that there was no power on the emergency grid the UPS switched on its inverter and provided uninterrupted power to the cryogenic control system and the ODH system. All of the motorized equipment shut off instrument air compressor, vacuum pumps 1 and 2, insulating vacuum blower, glycol cooling pumps, cooling tower fan, and Exhaust Fan 7(EF7). Upon reengagement of power to the grid from the emergency generator, all of the motorized loads started back up with the exception of vacuum pumps 1 and 2, and the UPS inverter turned off. Vacuum pumps 1 and 2 were delay started 20 seconds by the cryogenic control system as not to cause too large of a surge in power by all of the inductive loads starting at once. The DO building elevator which is also on emergency power was test run while the emergency generator was on line with all other emergency loads. The emergency ...
Date: January 24, 1991
Creator: Markley, D. & /Fermilab