UNT Libraries Government Documents Department - Browse


0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1-eV)/GaInAs(0.7-eV) Four-Junction Solar Cell: Preprint

Description: We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga0.5In0.5P/GaAs/Ga0.75In0.25As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga0.75In0.25As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap GaxIn1-xAs fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the GaxIn1-xAs fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.
Date: May 1, 2006
Creator: Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W. & Kurtz, S. R.

The 0.38 Percent Across-the-Board Cut in FY2000 Appropriations

Description: This report outlines cuts made in the federal budget for FY2000. The 0.38% cut was expected to yield savings of $2.4 billion in budget authority and $1.4 billion in outlays for the fiscal year. Departments with cuts in excess of $100 million included the Departments of Defense, Transportation, Health and Human Services, and Education.
Date: February 25, 2000
Creator: Keith, Robert

0.351 micron Laser Beam propagation in High-temperature Plasmas

Description: A study of the laser-plasma interaction processes have been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. The plasma emulator is produced in a gas-filled hohlraum; a blue 351-nm laser beam propagates along the axis of the hohlraum interacting with a high-temperature (T{sub e} = 3.5 keV), dense (n{sub e} = 5 x 10{sup 20}cm{sup -3}), long-scale length (L {approx} 2 mm) plasma. Experiments at these conditions have demonstrated that the interaction beam produces less than 1% total backscatter resulting in transmission greater than 90% for laser intensities less than I < 2 x 10{sup 15} W-cm{sup -2}. The bulk plasma conditions have been independently characterized using Thomson scattering where the peak electron temperatures are shown to scale with the hohlraum heater beam energy in the range from 2 keV to 3.5 keV. This feature has allowed us to determine the thresholds for both backscattering and filamentation instabilities; the former measured with absolutely calibrated full aperture backscatter and near backscatter diagnostics and the latter with a transmitted beam diagnostics. A plasma length scaling is also investigated extending our measurements to 4-mm long high-temperature plasmas. At intensities I < 5 x 10{sup 14} W-cm{sup -2}, greater than 80% of the energy in the laser is transmitted through a 5-mm long, high-temperature (T{sub e} > 2.5 keV) high-density (n{sub e} = 5 x 10{sup 20} w-cm{sup -3}) plasma. Comparing the experimental results with detailed gain calculations for the onset of significant laser scattering processes shows a stimulated Brillouin scattering threshold (R=10%) for a linear gain of 15; these high temperature, low density experiments produce plasma conditions comparable to those along the outer beams in ignition hohlraum designs. By increasing the gas fill density (n{sub e} = 10{sup 21} cm{sup -3}) in these ...
Date: December 10, 2007
Creator: Froula, D.; Divol, L.; Meezan, N.; Ross, J.; Berger, R. L.; Michel, P. et al.

0.25mm-thick CCD packaging for the Dark Energy Survey Camera array

Description: The Dark Energy Survey Camera focal plane array will consist of 62 2k x 4k CCDs with a pixel size of 15 microns and a silicon thickness of 250 microns for use at wavelengths between 400 and 1000 nm. Bare CCD die will be received from the Lawrence Berkeley National Laboratory (LBNL). At the Fermi National Accelerator Laboratory, the bare die will be packaged into a custom back-side-illuminated module design. Cold probe data from LBNL will be used to select the CCDs to be packaged. The module design utilizes an aluminum nitride readout board and spacer and an Invar foot. A module flatness of 3 microns over small (1 sqcm) areas and less than 10 microns over neighboring areas on a CCD are required for uniform images over the focal plane. A confocal chromatic inspection system is being developed to precisely measure flatness over a grid up to 300 x 300 mm. This system will be utilized to inspect not only room-temperature modules, but also cold individual modules and partial arrays through flat dewar windows.
Date: June 1, 2006
Creator: Derylo, Greg; Diehl, H.Thomas & Estrada, Juan

0.52eV Quaternary InGaAsSb Thermophotovoltaic Diode Technology

Description: Thermophotovoltaic (TPV) diodes fabricated from 0.52eV lattice-matched InGaAsSb alloys are grown by Metal Organic Vapor Phase Epitaxy (MOVPE) on GaSb substrates. 4cm{sup 2} multi-chip diode modules with front-surface spectral filters were tested in a vacuum cavity and attained measured efficiency and power density of 19% and 0.58 W/cm{sup 2} respectively at operating at temperatures of T{sub radiator} = 950 C and T{sub diode} = 27 C. Device modeling and minority carrier lifetime measurements of double heterostructure lifetime specimens indicate that diode conversion efficiency is limited predominantly by interface recombination and photon energy loss to the GaSb substrate and back ohmic contact. Recent improvements to the diode include lattice-matched p-type AlGaAsSb passivating layers with interface recombination velocities less than 100 cm/s and new processing techniques enabling thinned substrates and back surface reflectors. Modeling predictions of these improvements to the diode architecture indicate that conversion efficiencies from 27-30% and {approx}0.85 W/cm{sup 2} could be attained under the above operating temperatures.
Date: June 9, 2004
Creator: Dashiell, M. W.; Beausang, J. F.; Nichols, G.; Depoy, D. M.; Danielson, L. R.; Ehsani, H. et al.

$D^0$ hot topics

Description: The authors present recent D0 results based on approximately 1 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV recorded at the Fermilab Tevatron. Preliminary results on a search for the flavor changing neutral current process D{sup +} {yields} {pi}{sup +}{mu}{sup +}{mu}{sup -}, a measurement of the Cp violation parameter in B mixing, {epsilon}{sub B}, and a two sided limit on the B{sub s} oscillation frequency {Delta}m{sub s} are presented. The limits on {epsilon}{sub B} and {Beta}(D{sup +} {yields} {pi}{sup +}{mu}{sup +}{mu}{sup -}) are the world's best limits. The two sided bound on {Delta}m{sub s} is the first direct indication by a single experiment that {Delta}m{sub s} is bounded from above.
Date: May 1, 2006
Creator: Buchholz, D.

1,2-HOIQO--A highly versatile 1,2-HOPO analog

Description: A cyclic, bidentate hydroxamic acid binding unit based on an isoquinoline scaffold has been utilized for the synthesis of a hexadentate tripodal ligand based on the TREN backbone. This prototype for a new class of multidentate chelators forms mononuclear iron(III) complexes and one-dimensional coordination polymers with lanthanide(III) cations. The latter has been determined by single crystal X-ray analysis of the cerium species. The solid state structure in the monoclinic space group P2{sub 1}/c (C{sub 36}H{sub 34}CeN{sub 7}O{sub 11}, a = 12.341(2){angstrom}, b = 26.649(4){angstrom}, c = 10.621(2){angstrom}, {alpha} = {gamma} = 90{sup o}, {beta} = 96.753(3){sup o}, V = 3468.6(9) {angstrom}{sup 3}, Z = 4) exhibits a trigonal-dodecahedral environment around the cerium cation. The proof of concept for the versatility of the new scaffold has been shown by the modification of the crucial precursor 3-carboxyiso-coumarin through electrophilic aromatic substitutions to yield the corresponding chlorosulfonated and nitrated analogs.
Date: August 7, 2006
Creator: Seitz, Michael; Pluth, Michael D. & Raymond, Kenneth N.

1,2-Hydroxypyridonates as Contrast Agents for Magnetic ResonanceImaging: TREN-1,2-HOPO

Description: 1,2-Hydroxypyridinones (1,2-HOPO) form very stable lanthanide complexes that may be useful as contrast agents for Magnetic Resonance Imaging (MRI). X-ray diffraction of single crystals established that the solid state structures of the Eu(III) and the previously reported [Inorg. Chem. 2004, 43, 5452] Gd(III) complex are identical. The recently discovered sensitizing properties of 1,2-HOPO chelates for Eu(III) luminescence allow direct measurement of the number if water molecules in the metal complex. Fluorescence measurements of the Eu(III) complex corroborate that in solution two water molecules coordinate the lanthanide (q = 2) as proposed from the analysis of NMRD profiles. In addition, fluorescence measurements have verified the anion binding interactions of lanthanide TREN-1,2-HOPO complexes in solution, studied by relaxivity, revealing only very weak oxalate binding (K{sub A} = 82.7 {+-} 6.5 M{sup -1}). Solution thermodynamic studies of the metal complex and free ligand have been carried out using potentiometry, spectrophotometry and fluorescence spectroscopy. The metal ion selectivity of TREN-1,2-HOPO supports the feasibility of using 1,2-HOPO ligands for selective lanthanide binding [pGd = 19.3 (2); pZn = 15.2 (2), pCa = 8.8 (3)].
Date: May 8, 2007
Creator: Jocher, Christoph J.; Moore, Evan G.; Xu, Jide; Avedano, Stefano; Botta, Mauro; Aime, Silvio et al.

1,3-Propanediol Made From Fermentation-Derived Malonic Acid: Office of Industrial Technologies (OIT) Agriculture Project Fact Sheet

Description: 1,3-Propanediol is one of two ingredients used in producing polytrimethylene terephthalate (PTT), a polymer which can be used in polyester and nylon applications. Researchers are developing a process to ferment biomass feedstock to malonic acid using filamentous fungi and then catalytically convert malonic acid to 1,3-propanediol.
Date: September 12, 2001
Creator: Carde, T.

A 1.8 Mev K+ injector for the high current beam transport experiment fusion

Description: For the High Current Beam Transport Experiment (HCX) at LBNL, an injector is required to deliver up to 1.8 MV of 0.6 A K{sup +} beam with an emittance of {approx}1 p-mm-mrad. We have successfully operated a 10-cm diameter surface ionization source together with an electrostatic quadrupole (ESQ) accelerator to meet these requirements. The pulse length is {approx}4 {micro}s, firing at once every 10-15 seconds. By optimizing the extraction diode and the ESQ voltages, we have obtained an output beam with good current density uniformity, except for a small increase near the beam edge. Characterization of the beam emerging from the injector included measurements of the intensity profile, beam imaging, and transverse phase space. These data along with comparison to computer simulations provide the knowledge base for designing and understanding future HCX experiments.
Date: May 20, 2002
Creator: Kwan, J.W.; Bieniosek,F.M.; Henestroza, E.; Prost, L. & Seidl, P.


Description: The purpose of this task was to determine if mixing was an issue for the entrainment and dispersion of the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) solvent in the Defense Waste Processing Facility (DWPF) Strip Effluent Feed Tank (SEFT). The MCU strip effluent stream containing the Cs removed during salt processing will be transferred to the DWPF for immobilization in HLW glass. In lab-scale DWPF chemical process cell testing, mixing of the solvent in the dilute nitric acid solution proved problematic, and the Savannah River National Laboratory (SRNL) was requested to perform scaled SEFT mixing tests to evaluate whether the problem was symptomatic of the lab-scale set-up or of the solvent. The solvent levels tested were 228 and 235 ppm, which represented levels near the estimated DWPF solvent limit of 239 ppm in 0.001M HNO{sub 3} solution. The 239 ppm limit was calculated by Norato in X-CLC-S-00141. The general approach for the mixing investigation was to: (1) Investigate the use of fluorescent dyes to aid in observing the mixing behavior. Evaluate and compare the physical properties of the fluorescent dyed MCU solvents to the baseline Oak Ridge CSSX solvent. Based on the data, use the dyed MCU solvent that best approximates the physical properties. (2) Use approximately a 1/6th linear scale of the SEFT to replicate the internal configuration for DWPF mixing. (3) Determine agitator speed(s) for scaled testing based on the DWPF SEFT mixing speed. (4) Perform mixing tests using the 1/6th SEFT and determine any mixing issues (entrainment/dispersion, accumulation, adhesion) through visual observations and by pulling samples to assess uniformity. The mixing tests used MCU solvent fabricated at SRNL blended with Risk Reactor DFSB-K43 fluorescent dye. This dyed SRNL MCU solvent had equivalent physical properties important to mixing as compared to the Oak Ridge baseline solvent, ...
Date: February 1, 2006
Creator: Hansen, E.


Description: We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.
Date: August 2000
Creator: Evans, T. M.; Urbatsch, T. J. & Lichtenstein, H.


Description: This paper describes electrical design criteria and first operational results a 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt-peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. A review of these design parameters and the first results of the performance characteristics will be presented.
Date: June 1, 2001
Creator: REASS, W.A.; DOSS, J.D. & GRIBBLE, R.F.


Description: A test stand for the investigation of 1+-n+ charge boosting using an ECR ion sources is currently being assembled at the Texas A&M Cyclotron Institute. The ultimate goal is to relate the charge-boosting of ions of stable species to possible charge-boosting of ions of radioactive species extracted from the diverse, low-charge-state ion sources developed for radioactive ion beams.
Date: April 7, 2006
Creator: May, Donald P.

1 Outreach, Education and Domestic Market Enhancement 2 Export Promotion and Assistance

Description: Geothermal Energy Association supports the US geothermal industry in its efforts to bring more clean geothermal energy on-line throughout the world. Activities designed to accomplish this goal include: (1) developing and maintaining data bases, web pages, (2) commissioning of special studies and reports, (3) preparing, printing and distributing brochures and newsletters, (4) developing exhibits and displays, and participating in trade shows, (5) designing, producing and disseminating audio-video materials, (6) monitoring and coordinating programs carried out by US DOE and other Federal agencies, (7) holding workshops to facilitate communication between researchers and industry and to encourage their recognition of emerging markets for geothermal technology, (8) attending conferences, making speeches and presentation, and otherwise interacting with environmental and other renewable energy organizations and coalitions, (9) hosting events in Washington, DC and other appropriate locations to educate Federal, State and local representatives, environmental groups, the news media, and other about the status and potential of geothermal energy, (10) conducting member services such as the preparation and distribution of a member newsletter related to operating and maintaining s useful and viable association, and (11) performing similar kinds of activities designed to inform others about geothermal energy. The activities of the export promotion aim to assist industry in accomplishing the goal of successfully penetrating and developing energy in country with existing geothermal resources and a desire to develop them. Activities including in export promotion are: (1)needs analysis and assessment involve monitoring the progress of developing markets and projects overseas and working with US industry to determine what future activities by GEA would be of greatest assistance, (2) outreach includes the preparation and dissemination of brochures and videos for foreign professionals, officials and decision-makers as well as presentations of information of the geothermal technology and the capabilities of the US geothermal industry, (3) Market conditioning involves ...
Date: March 15, 2004
Creator: Geothermal Energy Association

2.1 Pan-WCRP Monsoon Modelling Workshop Summary

Description: Ken Sperber led a discussion of the outcome of the Pan-WCRP Monsoon Modelling Workshop that was held at the University of California at Irvine from 15-17 June 2005. At the workshop presentations from key CLIVAR and GEWEX panels were presented to highlight the outstanding problems in modelling the Earth's monsoons. Additionally, presentations from invited experts were given to highlight important aspects of monsoon phenomena and processes, such as low-level jets, air-sea interaction, predictability, observational networks/studies, and model test beds etc. Since all persons attending the CLIVAR AAMP meeting were present for all, or most, of the monsoon workshop, a detailed description of the workshop presentations was not given. Rather, the discussion was focused on the recommendations of the workshop breakout groups and their relevance to CLIVAR AAMP. CLIVAR AAMP endorsed the near-term workshop recommendation of investigating the diurnal cycle using a hierarchy of models a key way forward for promoting CLIVAR/GEWEX interactions. In GCM studies CLIVAR researchers have identified the diurnal cycle as a forced ''mode'' of variability that is poorly represented in terms of amplitude and phase, especially in the case of precipitation. Typical phase errors of 6-12 hours are noted over both land and ocean in GCMs. CLIVAR views adequate simulation of the diurnal cycle as key aspect of variability in its own right, but also because of its potential rectification on to subseasonal variability (e.g., the Madden-Julian oscillation). It is hypothesized that improvement of diurnal variability may lead to an improved representation of intraseasonal variability and improved skill of monsoon forecasts on medium-range to seasonal time scales.
Date: June 28, 2005
Creator: Sperber, K R


Description: In the title compound, the Sr-N distances are 2.624 (3) and 2.676 (3) Angstroms. The Sr-centroid distances are 2.571 and 2.561 Angstroms. The N-C-C-N torsion angle in the bipyridine ligand is 2.2 (4){sup o}. Interestingly, the bipyridine ligand is tilted. The angle between the plane defined by Sr1, N1 and N2 and the plane defined by the 12 atoms of the bipyridine ligand is 10.7{sup o}.
Date: July 3, 2008
Creator: Kazhdan, Daniel; Kazhdan, Daniel; Hu, Yung-Jin; Kokai, Akos; Levi, Zerubba & Rozenel, Sergio

2.5 MHz feedforward beam loading compensation in the Fermilab Main Injector

Description: There are five 2.5 MHz ferrite cavities (h = 28) in the Main Injector with an R/Q of 500 that are presently used for coalescing for the Tevatron. For use with the Fermilab Recycler, feedforward (FF) beam loading compensation (BLC) is required on these cavities because they will be required to operate at a net of 2 kV. Under current Recycler beam conditions, the beam-induced voltage is of this order. Recently a system using a digital bucket delay module operating at 53 MHz (h = 588) was used to produce a one-turn-delay feedforward signal. This signal was then combined with the low level RF signal to the 2.5 MHz cavities to cancel the beam induced voltage. During current operation they have shown consistently to operate with over a 20 dB reduction in beam loading.
Date: May 19, 2003
Creator: Dey, Joseph E.; Kourbanis, Ioanis & Steimel, James

2-D and 3-D Elastic Modeling with Shared Seismic Models

Description: Several elastic models, both 2-D and 3-D, are being built for use in calculating synthetic elastic seismic data. The models will be made available to the research community, along with the synthetic data that are being calculated from them. These shared models have been proposed or contributed by participants in a collaborative industry, national laboratory, and university research project. The purpose of the modeling is to provide synthetic data to better understand elastic wave propagation and the effects of structural and stratigraphic complexities. The 2-D models are easier to design and change and synthetic calculations can be run relatively quickly in them. It will be possible to alter their layer properties and calculate time-lapse data sets from them. Field data will be available to accompany many of the 2-D models. 3-D models are more realistic, but more difficult to design and change. They also require considerably more computing resources to calculate synthetic data from them. A new 3-D model is being designed, and will be used for computing synthetic elastic data.
Date: April 30, 2002
Creator: House, L.; Marfurt, K. J.; Larsen, S. & Martin, G. S.

2-D Imaging of Electron Temperature in Tokamak Plasmas

Description: By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.
Date: July 8, 2004
Creator: Munsat, T.; Mazzucato, E.; Park, H.; Domier, C. W.; Johnson, M.; Luhmann, N. C., Jr. et al.