UNT Libraries Government Documents Department - 119,952 Matching Results

Search Results

AGS RESONANT EXTRACTION WITH HIGH INTENSITY BEAMS.

Description: The Brookhaven AGS third integer resonant extraction system allows the AGS to provide high quality, high intensity 25.5 GeV/c proton beams simultaneously to four target stations and as many as 8 experiments. With the increasing intensities (over 7 x 10{sup 13} protons/pulse) and associated longer spill periods (2.4 to 3 seconds long), we continue to run with low losses and high quality low modulation continuous current beams.[1] Learning to extract and transport these higher intensity beams has required a process of careful modeling and experimentation. We have had to learn how to correct for various instabilities and how to better match extraction and the transport lines to the higher emittance beams being accelerated in the AGS. Techniques employed include ''RF'' methods to smooth out momentum distributions and fine structure. We will present results of detailed multi-particle tracking modeling studies which enabled us to develop a clear understanding of beam loss mechanisms in the transport and extraction process. We will report on our status, experiences, and the present understanding of the intensity limitations imposed by resonant extraction and transport to fixed target stations.
Date: March 29, 1999
Creator: AHRENS,L.; BROWN,K.; GLENN,J. W.; ROSER,T.; TSOUPAS,N. & VANASSELT,W.

Periodic Boundary Conditions in the ALEGRA Finite Element Code

Description: This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given.
Date: November 1, 1999
Creator: AIDUN,JOHN B.; ROBINSON,ALLEN C. & WEATHERBY,JOE R.

Representative volume size: A comparison of statistical continuum mechanics and statistical physics

Description: In this combination background and position paper, the authors argue that careful work is needed to develop accurate methods for relating the results of fine-scale numerical simulations of material processes to meaningful values of macroscopic properties for use in constitutive models suitable for finite element solid mechanics simulations. To provide a definite context for this discussion, the problem is couched in terms of the lack of general objective criteria for identifying the size of the representative volume (RV) of a material. The objective of this report is to lay out at least the beginnings of an approach for applying results and methods from statistical physics to develop concepts and tools necessary for determining the RV size, as well as alternatives to RV volume-averaging for situations in which the RV is unmanageably large. The background necessary to understand the pertinent issues and statistical physics concepts is presented.
Date: May 1, 1999
Creator: AIDUN,JOHN B.; TRUCANO,TIMOTHY G.; LO,CHI S. & FYE,RICHARD M.

AntiReflection Coating D

Description: Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub sc}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design be used to provide an additional degree of freedom for current matching multi-junction devices.
Date: September 23, 1999
Creator: AIKEN,DANIEL J.

Antireflection Coating Design for Series Interconnected Multi-Junction Solar Cells

Description: AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub SC}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices.
Date: November 29, 1999
Creator: AIKEN,DANIEL J.

Observations of Non-Close-Packed Arrangements in Multilayers of Passivated Gold Clusters

Description: The stacking of second and third layers of supercrystals of self-assembled passivated gold nanoparticles has been investigated using transmission electron microscopy. We report for the first time nanoparticles occupying the twofold saddle site in the third layer.
Date: October 5, 1999
Creator: AINDOW, M.; BROWN, P.; KIELY, C.J.; WELLNER, A. & WILCOXON, JESS P.

Investigation of Sodium Distribution in Phosphate Glasses Using Spin-Echo {sup 23}Na NMR

Description: The spatial arrangement of sodium cations for a series of sodium phosphate glasses, xNa{sub 2}O(100-x)P{sub 2}O{sub 5} (x<55), were investigated using {sup 23}Na spin-echo NMR spectroscopy. The spin-echo decay rate is a function of the Na-Na homonuclear dipolar coupling and is related to the spatial proximity of neighboring Na nuclei. The spin-echo decay rate in these sodium phosphate glasses increases non-linearly with higher sodium number density, and thus provides a measure of the Na-Na extended range order. The results of these {sup 23}Na NMR experiments are discussed within the context of several structural models, including a decimated crystal lattice model, cubic dilation lattice model, a hard sphere (HS) random distribution model and a pair-wise cluster hard sphere model. While the experimental {sup 23}Na spin-echo M{sub 2} are described adequately by both the decimated lattice and the random HS model, it is demonstrated that the slight non-linear behavior of M{sub 2} as a function of sodium number density is more correctly described by the random distribution in the HS model. At low sodium number densities the experimental M{sub 2} is inconsistent with models incorporating Na-Na clustering. The ability to distinguish between Na-Na clusters and non-clustered distributions becomes more difficult at higher sodium concentrations.
Date: September 16, 1999
Creator: ALAM, TODD M.; BOYLE, TIMOTHY J.; BROW, RICHARD K.; CLICK, CAROL C.; CONZONE, SAM; McLAUGHLIN, JAY et al.

Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

Description: Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.
Date: December 21, 1999
Creator: ALAM,TODD M.

GEOTHERMAL HEAT PUMP GROUTING MATERIALS

Description: The thermal conductivity of cementitious grouts has been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. The cement-sand grouts were also tested for rheological characteristics, bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the thermal conductivity, permeability, bonding and exotherm data for selected cementitious grouts. The theoretical reduction in bore length that could be achieved with the BNL-developed cement-sand grouts is examined. Finally, the FY 98 research and field trials are discussed.
Date: April 1, 1998
Creator: ALLAN,M.

THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS

Description: The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.
Date: May 1, 1998
Creator: ALLAN,M.

COATINGS FOR PROTECTION OF EQUIPMENT FOR BIOCHEMICAL PROCESSING OF GEOTHERMAL RESIDUES: PROGRESS REPORT FY 97

Description: Thermal sprayed ethylene methacrylic acid (EMAA) and ethylene tetrafluoroethylene (ETFE), spray-and-bake ETFE and polyvinylidene fluoride (PVDF) and brushable ceramic-epoxy coatings were evaluated for corrosion protection in a biochemical process to treat geothermal residues. The findings are also relevant to other moderate temperature brine environments where corrosion is a problem. Coupon, Atlas cell, peel strength, cathodic disbondment and abrasion tests were performed in aggressive environments including geothermal sludge, hypersaline brine and sulfur-oxidizing bacteria (Thiobadus ferrooxidans) to determine suitability for protecting storage tanks and reaction vessels. It was found that all of the coatings were resistant to chemical attack and biodegradation at the test temperature of 55 C. The EMAA coatings protected 316L stainless steel from corrosion in coupon tests. However, corrosion of mild steel substrates thermal sprayed with EMAA and ETFE occurred in Atlas cell tests that simulated a lined reactor operating environment and this resulted in decreased adhesive strength. Peel tests to measure residual adhesion revealed that failure mode was dependent on exposure conditions. Long-term tests on the durability of ceramic-epoxy coatings in brine and bacteria are ongoing. Initial indications are that this coating has suitable characteristics. Abrasion tests showed that the ceramic-epoxy had good resistance to the abrasive effects of sludge. Thermal sprayed EMAA coatings also displayed abrasion resistance. Cathodic disbondment tests in brine at room temperature indicated that EMAA coatings are resistant to disbondment at applied potentials of {minus}780 to {minus}1,070 mV SCE for the test conditions and duration. Slight disbondment of one specimen occurred at a potential of {minus}1,500 mV SCE. The EMAA may be suited to use in conjunction with cathodic protection although further long-term, higher temperature testing would be needed.
Date: November 1, 1997
Creator: ALLAN,M.L.

SURVEY OF OPERATION AND MAINTENANCE-RELATED MATERIALS NEEDS IN GEOTHERMAL POWER PLANTS

Description: A survey was conducted to determine operation and maintenance (O and M)-related materials needs in geothermal power plants and to identify future research and development to address these needs. A total of 44 questionnaires was mailed to geothermal plant operators and industry consultants. The response rate was 54%. The participants were asked to describe type and frequency of materials problems, strategies currently used to mitigate such problems, barriers to using new or alternative materials and technologies, sources of information and give their views research and development priorities. A. wide range of opinions was obtained, reflecting each individual respondent's perspective and the site-specific nature of some problems. However, the consensus is that corrosion and scaling remain major issues and that components requiring performance improvements include pipelines, well casing, turbines, heat exchangers, condensers, valves and cooling towers. It is recommended that appropriate research and development continue to be directed at reducing O and M costs associated with materials failure or inadequate service. There should be a balance between optimizing existing materials through better design and understanding of behavior in geothermal environments and development of new materials. Life extension of existing equipment, service life prediction, education of plant personnel in materials and methods for mitigating corrosion, and improvements in inhibitors and biocides would also be beneficial.
Date: June 1, 1998
Creator: ALLAN,M.L.

LITERATURE SURVEY ON CEMENTS FOR REMEDIATION OF DEFORMED CASING IN GEOTHERMAL WELLS

Description: Brookhaven National Laboratory was requested to conduct a literature survey for the best available cement to use in the proposed casing patch as part of the Geothermal Drilling Organization (GDO) project on remediation of deformed casings. A total of 50 wells has been identified with deformed production casing in Unocal's portion of The Geysers geothermal field. Reduced internal diameter and casing doglegs result in lost production and the possible need for abandonment. The cause of the deformations is believed to be formation movement along fault planes and/or along weaker layers or interfaces between high impedance contrast media. Apparently, it is unclear whether shear or axial compression is the dominant failure mechanism. A procedure to address the casing deformation and avoid abandonment of these wells has been developed as described in the Geysers Deformed Casing Remediation Proposal. The proposed remediation procedure involves isolation of the zone of interest with an inflatable packer, milling the deformed casing and cementing a 7 inch diameter liner to extend approximately 100 ft above and 100 ft below the milled zone. During the milling operation it is possible that the original cement and surrounding formation may slough away. In order to specify a suitable cement formulation for the casing patch it is first necessary to identify and understand the deformation mechanism/s operating in The Geysers field. Subsequently, the required cement mechanical properties to withstand further deformation of the repaired system must be defined. From this information it can be determined whether available cement formulations meet these requirements. In addition to The Geysers, other geothermal fields are at possible risk of casing deformation due to subsidence, seismic activity, lateral and vertical formation movement or other processes. Therefore, the proposed remediation procedure may have applications in other fields. The literature survey focused on published properties for cements used ...
Date: November 1, 1998
Creator: ALLAN,M.L. & PHILIPPACOPOULOS,A.J.

THERMALLY CONDUCTIVE CEMENTITIOUS GROUTS FOR GEOTHERMAL HEAT PUMPS. PROGRESS REPORT BY 1998

Description: Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98.
Date: November 1, 1998
Creator: ALLAN,M.L. & PHILIPPACOPOULOS,A.J.

PLASMA SPRAYED Ni-Al COATINGS FOR SAFE ENDING HEAT EXCHANGER TUBES

Description: Brookhaven National Laboratory (BNL) has developed thermally conductive composite liners for corrosion and scale protection in heat exchanger tubes exposed to geothermal brine. The liners cannot withstand roller expansion to connect the tubes to the tubesheet. It is not possible to line the ends of the tubes with the same material after roller expansion due to the nature of the current liner application process. It was requested that BNL evaluate plasma sprayed Ni-Al coatings for safe ending heat exchanger tubes exposed to geothermal brine. The tubes of interest had an internal diameter of 0.875 inches. It is not typical to thermal spray small diameter components or use such small standoff distances. In this project a nozzle extension was developed by Zatorski Coating Company to spray the tube ends as well as flat coupons for testing. Four different Ni-Al coatings were investigated. One of these was a ductilized Ni-AIB material developed at Oak Ridge National Laboratory. The coatings were examined by optical and scanning electron microscopy. In addition, the coatings were analyzed by X-ray diffraction and subjected to corrosion, tensile adhesion, microhardness and field tests in a volcanic pool in New Zealand. It was determined that the Ni-Al coatings could be applied to a depth of two inches on the tube ends. When sprayed on flat coupons the coatings exhibited relatively high adhesion strength and microhardness. Polarization curves showed that the coating performance was variable. Measured corrosion potentials indicated that the Ni-Al coatings are active towards steel coated with thermally conductive polymers, thereby suggesting preferential corrosion. Corrosion also occurred on the coated coupons tested in the volcanic pool. This may have been exacerbated by the difficulty in applying a uniform coating to the coupon edges. The Ni-Al coatings applied to the tubes had significant porosity and did not provide adequate corrosion ...
Date: November 1, 1998
Creator: ALLAN,M.L.; OTTERSON,D. & BERNDT,C.C.

High-Resolution Transmission Electron Microscopy Calibration of Critical Dimension (CD) Reference Materials

Description: NIST and Sandia have developed a procedure for producing and calibrating critical dimension (CD), or linewidth, reference materials. These reference materials will be used to calibrate metrology instruments used in semiconductor manufacturing. The artifacts, with widths down to 100 nm, are produced in monocrystalline silicon with all feature edges aligned to specific crystal planes. A two-part calibration of these linewidths is used: the primary calibration, with accuracy to within a few lattice plane thicknesses, is accomplished by counting the lattice planes across the sample as-imaged through use of high-resolution transmission electron microscopy (HRTEM). The secondary calibration is the high-precision electrical CD technique. NIST and Sandia are developing critical dimension (CD), or linewidth, reference materials for use by the semiconductor industry. To meet the current requirements of this rapidly changing industry, the widths of the reference features must be at or below the widths of the finest features in production and/or development. Further, these features must produce consistent results no matter which metrology tool (e.g., scanning electron microscope, scanned probe microscope, electrical metrology) is used to make the measurement. This leads to a requirement for the samples to have planar surfaces, known sidewall angles, and uniform material composition. None of the production techniques in use in semiconductor manufacturing can produce features with all these characteristics. In addition, requirements specified in the National Technology Roadmap for Semiconductors indicate that the width of the feature must be accurately calibrated to approximately 1-2 nm, a value well beyond the current capabilities of the instruments used for semiconductor metrology.
Date: September 21, 1999
Creator: ALLEN, RICHARD A.; CRESSWELL, MICHAEL W.; EVERIST, SARAH C.; GHOSHTAGORE, RATHINDRA N.; HEADLEY, THOMAS J. & LINHOLM, LOREN W.

Two-Element Phased Array of Anti-Guided Vertical-Cavity Lasers

Description: We demonstrate for the first time anti-guided coupling of two adjacent vertical-cavity surface-emitting lasers (VCSEL's), obtaining a 1-by-2 phase-locked array at 869 nm. The lateral index modification required for anti-guiding is achieved by a patterned 3-rim etch performed between two epitaxial growths. In contrast with prior evanescently coupled VCSEL's, adjacent anti-guided VCSEL's can emit in-phase and produce a single on-axis lobe in the far field. Greater than 2 mW of in-phase output power is demonstrated with two VCSEL's separated by 8 {micro}m. Moreover, phase locking of two VCSEL's separated by 20 {micro}m is observed, indicating the possibility of a new class of optical circuits based upon VCSEL's that interact horizontally and emit vertically.
Date: September 27, 1999
Creator: ALLERMAN, ANDREW A.; CHOQUETTE, KENT D.; GEIB, KENT M.; HADLEY, G. RONALD & SERKLAND, DARWIN K.

Integrated Micro-Optical Fluorescence Detection System for Microfluidic Electrochromatography

Description: The authors describe the design and microfabrication of an extremely compact optical system as a key element in an integrated capillary-channel electrochromatograph with laser induced fluorescence detection. The optical design uses substrate-mode propagation within the fused silica substrate. The optical system includes a vertical cavity surface-emitting laser (VCSEL) array, two high performance microlenses and a commercial photodetector. The microlenses are multilevel diffractive optics patterned by electron beam lithography and etched by reactive ion etching in fused silica. Two generations of optical subsystems are described. The first generation design is integrated directly onto the capillary channel-containing substrate with a 6 mm separation between the VCSEL and photodetector. The second generation design separates the optical system onto its own module and the source to detector length is further compressed to 3.5 mm. The systems are designed for indirect fluorescence detection using infrared dyes. The first generation design has been tested with a 750 nm VCSEL exciting a 10{sup -4} M solution of CY-7 dye. The observed signal-to-noise ratio of better than 100:1 demonstrates that the background signal from scattered pump light is low despite the compact size of the optical system and meets the system sensitivity requirements.
Date: September 16, 1999
Creator: ALLERMAN,ANDREW A.; ARNOLD,DON W.; ASBILL,RANDOLPH E.; BAILEY,CHRISTOPHER G.; CARTER,TONY RAY; KEMME,SHANALYN A. et al.

The Growth of InGaAsN for High Efficiency Solar Cells by Metalorganic Chemical Vapor Deposition

Description: InGaAsN alloys are a promising material for increasing the efficiency of multi-junction solar cells now used for satellite power systems. However, the growth of these dilute N containing alloys has been challenging with further improvements in material quality needed before the solar cell higher efficiencies are realized. Nitrogen/V ratios exceeding 0.981 resulted in lower N incorporation and poor surface morphologies. The growth rate was found to depend on not only the total group III transport for a fixed N/V ratio but also on the N/V ratio. Carbon tetrachloride and dimethylzinc were effective for p-type doping. Disilane was not an effective n-type dopant while SiCl4 did result in n-type material but only a narrow range of electron concentrations (2-5e17cm{sup -3}) were achieved.
Date: September 16, 1999
Creator: ALLERMAN,ANDREW A.; BANKS,JAMES C.; GEE,JAMES M.; JONES,ERIC D. & KURTZ,STEVEN R.

Deep Levels in p- and n-type InGaAsN for High Efficiency Multi-Junction III-V Solar Cells

Description: Red Teaming is an advanced form of assessment that can be used to identify weaknesses in a variety of cyber systems. it is especially beneficial when the target system is still in development when designers can readily affect improvements. This paper discusses the red team analysis process and the author's experiences applying this process to five selected Information Technology Office (ITO) projects. Some detail of the overall methodology, summary results from the five projects, and lessons learned are contained within this paper.
Date: November 11, 1999
Creator: ALLERMAN,ANDREW A.; JONES,ERIC D.; KAPLAR,ROBERT J.; KURTZ,STEVEN R.; KWON,DAEWON & RINGEL,STEVEN A.