UNT College of Arts and Sciences - 811 Matching Results

Search Results

Application of a General Computer Algorithm Based on the Group-Additivity Method for the Calculation of Two Molecular Descriptors at Both Ends of Dilution: Liquid Viscosity and Activity Coefficient in Water at Infinite Dilution

Description: This paper presents the application of a commonly used computer algorithm based on the group-additivity method for the calculation of the liquid viscosity coefficient at 293.15 K and the activity coefficient at infinite dilution in water at 298.15 K or organic molecules.
Date: December 10, 2017
Creator: Naef, Rudolf & Acree, William E. (William Eugene)

Bad Pyrmont Spa

Description: Photo depicts the Bad Pyrmont Spa in western Germany which is known for its therapeutic baths and vapor cave. The paragraph on the bottom of page 70 gives details about the photo and the spa.
Date: Winter 2015
Creator: Marshall, James L., 1940- & Marshall, Virginia R.

Bioinspired Hydrogenase Models: The Mixed-Valence Triiron Complex [Fe₃(CO)₇(μ-edt)₂] and Phosphine Derivatives [Fe₃(CO)₇−ₓ(PPh₃)ₓ(μ-edt)₂] (x = 1, 2) and [Fe₃(CO)₅(κ²‑diphosphine)(μ- edt)₂] as Proton Reduction Catalysts

Description: This article describes the preparation and structural characterization of the mixed-valence triiron complexes.
Date: July 15, 2013
Creator: Rahaman, Ahibur; Ghosh, Shishir; Unwin, David G.; Basak-Modi, Sucharita; Holt, Katherine B.; Kabir, Shariff E. et al.

The Butterfly Dimer [(tBu3SiO)Cr]2 (μ-OSitBu3)2 and Its Oxidative Cleavage to (tBu3SiO)2 Cr(=N-N=CPh2)2 and (tBu3SiO)2 Cr=N(2,6-Ph2-C6H3)

Description: Article discussing research on the butterfly dimer [(ᵗBu₃SiO)Cr]₂(μ-OSiᵗBu₃)₂ and its oxidative cleavage to (ᵗBu₃SiO)₂Cr(=N-N=CPh₂)₂ and (ᵗBu₃SiO)₂Cr=N(2,6-Ph₂-C₆H₃).
Date: January 12, 2006
Creator: Sydora, Orson L.; Kuiper, David S.; Wolczanski, Peter T.; Lobkovsky, Emil B.; Dinescu, Adriana & Cundari, Thomas R., 1964-

Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of Ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals

Description: This article presents the calculation of the standard enthalpies of vaporization, sublimation and solvation of organic molecules using a common computer algorithm on the basis of a group-additivity method.
Date: June 25, 2017
Creator: Naef, Rudolf & Acree, William E. (William Eugene)