UNT Libraries - 164 Matching Results

Search Results

The Preparation, Properties, and Reactions of Silenes, Silenoids, and 2-Silanobornenes

Description: The reaction of chlorodimethylvinylsilane with tertbutyllithium was investigated in the presence of several conjugated dienes. In all cases except with 2,5-dimethylfuran, [2+4] cycloadducts of a silene intermediate are obtained in hydrocarbon solvents. The presence of THF in the reaction mixture suppresses the formation of cycloadducts in favor of 1,3-disilacyclobutanes. In the reaction of dimethylethoxyvinylsilane or dimethylmethoxyvinylsilane with tert-butyllithium the main product is the 1,1-dimethyl2-neopentyl-4-(dimethylalkoxysilyl)silacyclobutane. It is concluded that lithium chloride elimination to give silene intermediates occurs in hydrocarbon solvents. In the presence of strong Lewis bases or when the leaving group on silicon is an alkoxy group, the addition reaction giving a-lithiosilanes occurs and products arising from their coupling reactions are obtained.
Date: December 1981
Creator: Pierce, Richard A. (Richard Austin), 1918-2004

Pressure Effects on Electric Field Spectra of Molecular Rydberg States

Description: Electric field studies, electrochromism, were used to obtain excited-state data for analogous divalent sulfur compounds. The sulfides investigated were dimethyl sulfide and small cyclic sulfides including the three to six member ring compounds. The excited-state dipole moments and polarizabilities are reported for the first s, p, and d Rydberg absorption bands which occur in the near vacuum ultraviolet region from 230 to 170 nm. The excited-state data are interpreted in terms of the particular excited-state (s, p, or d) for the molecules and the bending differences due to the presence of the ring and the number of atoms in the ring. The next section describes the use of electrochromism to investigate the pressure effect of argon, carbon tetrafluoride and sulfur hexafluoride on the spectra for molecular Rydberg states.
Date: December 1982
Creator: Altenloh, Daniel Dean

Purification and Studies of Mammalian Glyoxalase Enzymes

Description: The glyoxalase system, which has been known since 1913, is widely distributed in nature. The system consists of two enzymes, glyoxalase I and glyoxalase II. Methylglyoxal is very unstable and undergoes oxidation and polymerization reactions. One of the purposes of this study was to find a simple, convenient and reproducible method of methylglyoxal preparation. Another objective was the purification of both glyoxalase enzymes employing affinity chromatography as a major step. The purified enzymes were to be characterized by chemical, physical and kinetic properties as an approach to the understanding of the biological function of the system.
Date: December 1980
Creator: Oray, Bedii

Pyrolysis Capillary Chromatography of Refuse-Derived Fuel and Aquatic Fulvic Acids

Description: Pyrolysis-capillary gas chromatography combined with FID, ECD and MS detection were used to characterize refuse-derived fuel and aquatic fulvic acids. Different pyrolysis methods and programs were evaluated. Pyrolysis temperatures of 700-800°C produced the strongest signal for organics present in RDF and fulvic acid. Cellulose and fatty acids pyrolyzates were identifiable by GC-MS following preparative pyrolysis fractionation. At organic chloride content of 0.023%, only three halogenated compounds were detected in the GC-MS of the fractions. None of the priority pollutants were detected at lower detection limit of 0.72 to 24 mg/ kg RDF. Selective solvent extraction improves the reproduciblities of the technique and allows the detection of polymeric structures. Pyrograms of polyvinyl chloride and regular typing paper showed some common peaks that are present in the RDF pyrogram. About 65% of the peaks in the RDF pyrogram might be of paper origin. The organic chloride content of the RDF was evaluated by ion chromatography of the trapped pyrolyzates in 2% NaOH trap and it was found to be 221 mg Cl/ kg dry RDF. Pyrolysis conditions and temperature programs for FA were systematically evaluated. Samples included purified FA, methylated FA and HPLC separated fractions. Characteristic pyrograms were developed. Profiles of benzene, toluene, phenol, m-cresol and biphenyl from FA were evaluated. The production of phenol was the largest at 800°C, at concentration of 1.61 mg per gram of FA pyrolyzed. The profiles of benzene and toluene followed the same pathways. Both pyrolyzates had at least two precursors. HPLC fractions of FA showed some regular retention patterns characteristic of polymeric material. DL-proline, seriene and vanillic acid pyrograms showed some peaks with the same retention times as those in FA pyrogram under the same conditions. A reproducibility of 6% relative standard deviation was achieved in the pyrolysis of RDF and 0.91% in the case ...
Date: December 1989
Creator: Haj-Mahmoud, Qasem M. (Qasem Mohammed)

Quantification of Poly(ADP-ribose) in Normal and in DNA-Damaged Cells

Description: This work presents the development of a new highly sensitive and selective chemical assay for poly(ADP-ribose) which is routinely useful for the determination of polymer levels in vivo. This method was used to carefully measure poly(ADP-ribose) levels in normal and in DNA-damaged cells. The results of these studies strongly suggest that synthesis of poly(ADP-ribose) is involved in some aspect of DNA repair. A review of the literature is presented in the introduction of this work. Poly(ADP-ribose) synthesis has been implicated in aspects of transcription, in DNA syn thesis, and in DNA repair largely based on evidence from in vitro studies. It is apparent that current methodology has not allowed the routine quantification of poly(ADP-ribose) in vivo, hence the lack of i^n vivo data concerning the function(s) of the polymer. The body of this work presents the development of two chemical methods for the quantification of poly(ADP-ribose) and the application of one of these methods to the measurement of polymer levels in normal and DNA-damaged cells. Preliminary studies are presented on the utilization of combined gas chromatography/mass spectroscopy for the selective quantification of nucleoside derivatives. A second method makes use of the unique chemistry of the polymer for quantification. The polymer was selectively adsorbed to dihydroxyboryl-sepharose which allowed the removal of most RNA, DNA, and protein from the samples. The polymer was hydrolyzed to the unique nucleoside 2'—^-l*'-ribosyladenosine by digestion with venom phosphodiesterase and bacterial alkaline phosphatase. The 1-N^-etheno derivative of ribosyladenosine was formed by reaction with chloroacetaldehyde and this derivative was seperated from other fluorescent species by reversed phase high pressure liquid chromatography.
Date: December 1980
Creator: Sims, James L.

A Quenchofluorometric Study of Polycyclic Aromatic Hydrocarbons in Molecularly Organized Media

Description: Detection, identification and separation of polycyclic aromatic compounds in environmental samples are of extreme importance since many of these compounds are well known for their potential carcinogenic and/or mutagenic activities. Selective quenching of molecular fluorescence can be utilized effectively to analyze mixtures containing different polycyclic aromatic hydrocarbons. Molecularly organized assemblies are used widely in detection and separation of these compounds mainly because of less toxicity and enhanced solubilization capabilities associated with these media. Feasibility of using nitromethane and the alkylpyridinium cation as selective fluorescence quenching agents for discriminating between alternant versus nonalternant polycyclic aromatic hydrocarbons (PAHs) is critically examined in several molecularly organized micellar solvent media. Fluorescence quenching is used to probe the structural features in mixed micelles containing the various combinations of anionic, cationic, nonionic and zwitterionic surfactants. Experimental results provide valuable information regarding molecular interactions between the dissimilar surfactants.
Date: May 1998
Creator: Pandey, Siddharth

Raman and NMR Investigation of Molecular Reorientation and Internal Rotation in Liquids

Description: Molecular rotational motions are known to influence both Raman scattering of light and nuclear spin relaxation. Therefore, the application of Raman bandshape analysis and NMR relaxation time measurements to probe molecular dynamics in liquids will provide us with a deeper understanding of the dynamical behavior and structure of molecules in the liquid phase. Presented here are (i) studies of molecular reorientation of acetonitrile in the neat liquid phase and in solution by Raman bandshape analysis and NMR relaxation; (ii) studies of reorientational dynamics and internal rotation in transition metal clusters by NMR relaxation.
Date: December 1991
Creator: Yuan, Peng

Raman and NMR Relaxation Studies of Molecular Dynamics in Liquids

Description: Raman vibrational bands are sensitive to fluctuations in the molecular environment. Variations in the bandwidth and peak position can then be utilized to monitor molecular forces and interactions present in condense phases. Nuclear Magnetic Resonance (NMR) provides a convenient probe for the study of molecular reorientation in liquids since nuclear spin relaxation times are dependent on the details of molecular motion. Presented here is the solvent study of the Raman bandwidths and frequency displacements of the mode of the compounds CH3MCI3 (M = C, Si, Ge, Sn) in a number of solvents of widely varying molecular structure. Also, a detailed isotope dilution study of the modes in CH2CI2/CD2CI2 mixtures is presented. In this set of experiments, I observed broadening of the v1 mode of CH2C12 upon dilution,which is the first experimental observation of such behavior. The temperature-dependent carbon-13 relaxation times and nuclear Overhauser enhancements in neat dichloromethane were measured. In this study we found that the molecular reorientation of this molecule was highly anisotropic, but could be well characterized assuming quasi-symmetric top behavior. In addition, in order to gain a more complete understanding of the reorientational dynamics in dichloromethane, we analyzed the 13-C NMR relaxation of CH2CI2 both in "inert" solvents of differing viscosities and in interactive solvents of varying Lewis basicities. Various theoretical models were also applied in order to characterize dichloromethane1s reorientational dynamics.
Date: August 1987
Creator: Rodriguez, Arturo A. (Arturo Angel)

Raman Studies of Molecular Dynamics and Interactions in Liquids

Description: In order to explore the N-H stretching region of aliphatic amines, we performed a study of the Raman spectrum of n-propylamine at various concentrations in cyclohexane. Statistical analysis provided evidence of a second symmetric stretching vibration, which we were able to assign to nonhydrogen bonded NH2 groups. To obtain additional evidence on the existence of monomers in n-propylamine and to further study hydrogen bonding and Fermi resonance in aliphatic amines, we extended the investigation to the analysis of the Raman spectrum of this compound over an extended range of temperature in the neat liquid phase. This study corroborated our finding that the peak previously assigned to the symmetric stretching mode of hydrogen bonded amines is actually composed of two bands. Furthermore, trends in both the resolved band parameters and the Fermi resonance analysis were tabulated, allowing one to monitor the change in the N-H valence region with concentration and temperature.
Date: May 1984
Creator: Friedman, Barry R. (Barry Richard)

Rational Design of Metal-organic Electronic Devices: a Computational Perspective

Description: Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-?, and ?-? interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d10 cyclo-[M(?-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(µ-Pz)]3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device engineers to choose the appropriate metal electrodes considering the chemical interactions at the interface. Additionally, the calculations performed on the interfaces provided valuable insight into binding energies, charge redistribution, change in the energy ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2012
Creator: Chilukuri, Bhaskar

Reactions of Anions of Cyclic Oximes, Oxime Ethers, and Chiral Imines

Description: The purpose of this investigation is to examine reactions of anions of oximes, oxime ethers and imines with acylating agents and other electrophiles. It is also an attempt to utilize the phenomenon of geometrical enantiomeric isomerism, in which absolute configuration is determined by double bond geometry, and the concept of regiospecific anion formation, also determined by double bond geometry, for stereospecific synthesis of tropinone derivatives.
Date: August 1980
Creator: Maloney, John R.

Rearrangement of Alkylhaloketene-Cyclopentadiene Adducts in Basic Solution--A New Synthesis of 2-Alkyltropones

Description: This research is concerned with determining whether the previously reported synthesis of tropolone by the solvolysis of the dichloroketene-cyclopentadiene adduct in sodium acetate and acetic acid could be used to prepare 2-alkyltropones from the adducts of alkylhaloketenes and cyclopentadiene. The information obtained from these rearrangements could be useful in determining the mechanism of the ring expansion of halogenated ketene-cyclopentadiene adducts to tropone derivatives.
Date: December 1971
Creator: Hieble, Jacob Paul, 1948-

The Recombination Rate Coefficient of Molecular Helium Ions in a Pulsed Afterglow at 1.86 Torr

Description: The recombination rate coefficient for molecular helium ions has been measured in a pulsed afterglow at 1.86 Torr as a function of electron temperature and electron density without making a priori assumptions about the functional dependence. The concentrations of the molecular ions and electrons were measured and the source terms for the molecular ions were included in the rate equation.
Date: August 1972
Creator: Hicks, Helen Segrave

Reducing the Computational Cost of Ab Initio Methods

Description: In recent years, advances in computer technology combined with new ab initio computational methods have allowed for dramatic improvement in the prediction of energetic properties. Unfortunately, even with these advances, the extensive computational cost, in terms of computer time, memory, and disk space of the sophisticated methods required to achieve chemical accuracy - defined as 1 kcal/mol from reliable experimental data effectively - limits the size of molecules [i.e. less than 10-15 non-hydrogen atoms] that can be studied. Several schemes were explored to help reduce the computational cost while still maintaining chemical accuracy. Specifically, a study was performed to assess the accuracy of ccCA to compute atomization energies, ionization potentials, electron affinities, proton affinities, and enthalpies of formation for third-row (Ga-Kr) containing molecules. Next, truncation of the correlation consistent basis sets for the hydrogen atom was examined as a possible means to reduce the computational cost of ab initio methods. It was determined that energetic properties could be extrapolated to the complete basis set (CBS) limit utilizing a series of truncated hydrogen basis sets that was within 1 kcal/mol of the extrapolation of the full correlation consistent basis sets. Basis set truncation for the hydrogen atom was then applied to ccCA in the development of two reduced basis set composite methods, ccCA(aug) and ccCA(TB). The effects that the ccCA(aug) and ccCA(TB) methods had upon enthalpies of formation and the overall percent disk space saved as compared to ccCA was examined for the hydrogen containing molecules of the G2/97 test suite. Additionally, the Weizmann-n (Wn) methods were utilized to compute the several properties for the alkali metal hydroxides as well as the ground and excited states of the alkali monoxides anion and radicals. Finally, a multi-reference variation to the correlation consistent Composite Approach [MR-ccCA] was presented and utilized in the computation ...
Date: August 2008
Creator: Mintz, Benjamin

Reduction Pathways in Cyclopentadienyl Rhenium Dicarbonyl Dibromide Deriviatives and Indenyl Rhenium Tricarbonyl: Synthesis, Structure, and Reactivity of Anionic Cyclopentadienyl Rhenium Complexes. Ring Attack vs. Metal-Halogen Exchange

Description: The reactions of diagonal and lateral Cp'Re(CO)2Br2 (where Cp' = n5-C5H5, n5-C5Me5) and (n5-CgH7)Re(CO)3 with reducing agents have been examined. Hydride reduction at -78 °C is observed to occur at the Cp ring in both CpRe(CO)2Br2 isomers, affording a thermally unstable [(n4 -C5Hg)Re(CO)2Br2]- complex. The product of hydride ring attack has been characterized by low-temperature IR and 1H NMR measurements in addition to 13C NOE and heteronuclear 2D NMR measurements. Reaction of lateral CpRe(CO)2Br2 with either MeLi or PhLi affords both Cp-ring attack and metalhalogen exchange, [CpRe(CO)2Br]- (1) while t-BuLi reacts exclusively via metal-halogen exchange. diag-CpRe(CO)2Br2 reacts with the above lithium reagents to yield the same metal-halogen exchange anion. Analogous reactions using diag- and lat-Cp*Re(CO)2Br2 (where Cp* = n5-CgMe5) afford only the corresponding rhenium metal-halogen exchange anion, [Cp*Re(CO)2Br] (2). The molecular structures of 1-[Li/15-Crown-5] and 2-PPP were established by X-ray crystallography. 1-[Li/15-Crown-5] crystallizes in the monoclinic space group P21 with a = 10.860(4) A, b = 13.116(5) A, c = 7.417(3) A, B = 105.26(3)0, V = 1018.7(3) A3 , and Z = 2. 2-PPP crystallizes in the orthorhombic space group Pbca with a = 20.646(5) A, b = 17.690(5) A, c = 17.553(3) A, and z = 8. Solution FT-IR studies of 2 in THF reveal the presence of only solvent-separated ion pairs when the gegencation is Li+, K+, or PPP+ from -70 °C to room temperature. 2-Na at room temperature displays a 39:61 mixture of carbonyl oxygen-sodium and solvent-separated ion pairs, respectively. These ion pairs reveals a reversible temperature-dependent equilibrium. The equilibrium constant has been determined by IR band shape analysis over the temperature range -70 °C to room temperature and values of AH and AS are reported. The reaction of the ring-attacked complex, diag-[(n4-C5H6)Re(CO)2Br2]- with PPh3, P(OPh)3, or Me3CNC leads to the formation of the CpRe(CO)2L. Treatment ...
Date: December 1989
Creator: Lee, Sang Woo, 1952-

Reductive Functionalization of 3D Metal-Methyl Complexes and Characterization of a Novel Dinitrogen Dicopper (I) Complex

Description: Reductive functionalization of methyl ligands by 3d metal catalysts and two possible side reactions has been studied. Selective oxidation of methane, which is the primary component of natural gas, to methanol (a more easily transportable liquid) using organometallic catalysis, has become more important due to the abundance of domestic natural gas. In this regard, reductive functionalization (RF) of methyl ligands in [M(diimine)2(CH3)(Cl)] (M: VII (d3) through CuII (d9)) complexes, has been studied computationally using density functional techniques. A SN2 mechanism for the nucleophilic attack of hydroxide on the metal-methyl bond, resulting in the formation of methanol, was studied. Similar highly exergonic pathways with very low energy SN2 barriers were observed for the proposed RF mechanism for all complexes studied. To modulate RF pathways closer to thermoneutral for catalytic purposes, a future challenge, paradoxically, requires finding a way to strengthen the metal-methyl bond. Furthermore, DFT calculations suggest that for 3d metals, ligand properties will be of greater importance than metal identity in isolating suitable catalysts for alkane hydroxylation in which reductive functionalization is used to form the C—O bond. Two possible competitive reactions for RF of metal-methyl complexes were studied to understand the factors that lower the selectivity of C—O bond forming reactions. One of them was deprotonation of the methyl group, which leads to formation of a methylene complex and water. The other side reaction was metal-methyl bond dissociation, which was assessed by calculating the bond dissociation free energies of M3d—CH3 bonds. Deprotonation was found to be competitive kinetically for most of the 1st row transition metal-methyl complexes (except for CrII, MnII and CuII), but less favorable thermodynamically as compared to reductive functionalization for all of the studied 1st row transition metal complexes. Metal-carbon bond dissociation was found to be less favorable than the RF reactions for most 3d transition ...
Date: May 2017
Creator: Fallah, Hengameh

Regulation of Lactobacillic Acid Formation in Lactobacillus Plantarum

Description: Cyclopropanation of the unsaturated fatty acid moieties of membrane phospholipids is a commonly observed phenomenon in a number of bacterial systems. The cyclopropane fatty acids are usually synthesized during and after the transition from exponential growth to stationary phase, or under such environmental conditions as acidic culture pH, low oxygen tension or high salt concentrations. S-Adenosylmethionine, the ubiquitous methyl group donor, provides the methylene bridge carbon in the reaction catalyzed by cyclopropane fatty acid synthase. Also formed in the reaction is S-adenosylhomocysteine, a potent inhibitor of cyclopropane fatty acid synthase, which is degraded by S-adenosylhomocysteine nucleosidase. This work provides evidence for at least two modes of regulation of lactobacillic acid synthesis, the cyclopropane fatty acid formed from cis-vaccenic acid (cis-11,12-octadecenoic acid), in Lactobacillus piantarum.
Date: December 1980
Creator: Smith, Darwin Dennis

Sensitization of Lanthanides and Organic-Based Phosphorescence via Energy Transfer and Heavy-Atom Effects

Description: The major topics discussed are the phosphorescence sensitization in the lanthanides via energy transfer and in the organics by heavy atom effects. The f-f transitions in lanthanides are parity forbidden and have weak molar extinction coefficients. Upon complexation with the ligand, ttrpy (4'-p-Tolyl-[2,2':6',2"]-terpyridine) the absorption takes place through the ligand and the excitation is transferred to the lanthanides, which in turn emit. This process is known as "sensitized luminescence." Bright red emission from europium and bright green emission from terbium complexes were observed. There is ongoing work on the making of OLEDs with neutral complexes of lanthanide hexafluoroacetyl acetonate/ttrpy, studied in this dissertation. Attempts to observe analogous energy transfer from the inorganic donor complexes of Au(I) thiocyanates were unsuccessful due to poor overlap of the emissions of these systems with the absorptions of Eu(III) and Tb(III). Photophysics of silver-aromatic complexes deals with the enhancement of phosphorescence in the aromatics. The heavy atom effect of the silver is responsible for this enhancement in phosphorescence. Aromatics such as naphthalene, perylene, anthracene and pyrene were involved in this study. Stern Volmer plots were studied by performing the quenching studies. The quenchers employed were both heavy metals such as silver and thallium and lighter metal like potassium. Dynamic quenching as the predominant phenomenon was noticed.
Date: May 2010
Creator: Arvapally, Ravi K.

Silene Stereochemistry

Description: The reaction of tert-butyllithium with chloromethylphenylvinylsilane at low temperatures in hexane gave a 48% yield of a mixture of the five isomers of 1,3-dimethyl-1,3-diphenyl-2,4-dineopentyl-1,3-disilacyclobutane, formed by the head-to-tail dimerization of both E- and Z-1-methyl-1-phenyl-2-neopentylsilenes, along with an acyclic dimer. These were separated and their stereochemistry was established by ('1)H- and ('13)C-NMR spectroscopy. The E- and Z-silenes were also trapped as their {4 + 2} cycloadducts with cyclopentadiene, 2,3-dimethyl-1,3-butadiene and anthracene, which also were separated and stereochemically characterized. A consistent mole ratio of 70:30 for the E- and Z-silene adducts is interpreted as evidence for stereochemical induction in the silene generation reaction. It is also suggested that the dimerization of the silenes to give the 1,3-disilacyclobutanes occurs by a nonstereospecific stepwise pathway. When E- or Z-1-methyl-1-phenyl-2-neopentylsilene was generated by the retro-Diels-Alder flow vacuum thermolysis of its corresponding cyclopentadiene or anthracene adduct at temperatures between 400 and 600(DEGREES)C and then trapped with 2,3-dimethyl-1,3-butadiene, the stereochemical distribution of the products is independent of the stereochemistry of the silene precursor, indicating that the silene is not configurationally stable towards cis-trans isomerization at these temperatures. Evidence that the intermolecular ene reaction and the {4 + 2} cycloaddition which occur with 2,3-dimethyl-1,3-butadiene are concerted is presented. When either the E- or Z-silene, generated by the sealed tube thermolysis of its anthracene adduct by 300(DEGREES)C, was trapped with trimethylmethoxysilene, the diastereomer obtained depended on the stereochemistry of the silene precursor, showing that the silene is configurationally stable towards cis-trans isomerization up to 300(DEGREES)C. The temperature dependence of the ratio of the two diastereomers obtained when the silene formed from the pure E- or Z-anthracene adduct was trapped at higher temperatures permitted the determination of an activation energy for the silene isomerization. The activation energies for the E- and Z- and Z- to E-silene isomerization are 45 (+OR-) ...
Date: August 1984
Creator: Lee, Myong Euy

Silenes and Silenoids in the Chemistry of Cyclopentadienylsilanes

Description: Evidence is presented that apparent silene products obtained from the metalation of cyclopentadienyldimethyl - chlorosilane either with tert-butyl1ithium or with methylenetriphenylphosphorane actually arise from the metalated starting material, a silenoid, rather than from a silafulvene intermediate. Trimethylmethoxysi1ane is shown to be an effective trap for dimethylsilafulvene. A new dimethylsilafulvene precursor, bis(dimethylmethoxysi1yl) cyclopentadiene, which gives high yields of dimethyldimethoxysi1ane and the silafulvene at temperatures as low as 240°C is reported.
Date: August 1986
Creator: Rozell, James M. (James Morris)

Solid State Diffusion Kinetics of Intermetallic Compound Formation in Composite Solder

Description: The Sn/Pb eutectic alloy system is the most widely used joining material in the electronics industry. In this application, the solder acts as both an electrical and mechanical connection within and among the different packaging levels in an electronic device. Recent advances in packaging technologies, however, driven by the desire for miniaturization and increased circuit speed, result in severe operating conditions for the solder connection. In an effort to improve its mechanical integrity, metallic or intermetallic particles have been added to eutectic Sn/Pb solder, and termed composite solders. It was the goal of this study to investigate the growth and morphology of the two intermetallic phases (Cu6Sn5 and Cu3Sn) that form between a Cu substrate and Sn/Pb solder under different aging and annealing conditions.
Date: May 1993
Creator: Sees, Jennifer A. (Jennifer Anne)

Solution Studies of the Structures and Stability of Mixed Lithium Alkoxide/Alkvllithium Aggregates

Description: New one- and two-dimensional NMR techniques were used to elucidate the solution structures of these complex mixtures. The system, lithium tert-butoxide/tert-butyllithium, was studied as a model system with O/Li ratios varying from 0/1 to 1/1. It was found that at low O/Li ratios, a single mixed tetrameric aggregate was formed. At higher O/Li ratios, mixed hexameric species were formed. Two other systems, lithium isopropoxide/iso-propyllithium and lithium n-propoxide/n-propyllithium were also studied at low O/Li ratios.
Date: December 1992
Creator: DeLong, George T. (George Thomas)

Solvent and Ionic Complexes of the Calix[6]arenes

Description: One of the more attractive attributes of calixarenes is their wide variety of possible conformations and hence cavity shapes. However, the flexibility that allows this long-range benefit gives rise to major synthetic challenges when working with the larger members of the family. O-alkylations have proven to be the most widely employed synthetic routes to "functionalization" of the calixarenes, and these have shown a dependence upon both solvent and the metal ions present. Surprisingly, there have been no structural data presented concerning the complexes between the simple unsubstituted calix[6]arenes and the metal ions of groups 1 and 2. The structures of four complexes, containing cesium, rubidium, and calcium are reported as determined by X-ray crystallography. The solution behavior of the complexes for both representative groups is also discussed, in particular with regard to conformational stabilization of the calix[6]arenes and the role of solvent upon this stabilization. These complexes are also investigated as starting materials for the selective functionalization of the calix[6]arenes.
Date: December 1997
Creator: Wolfgong, William J.