UNT Libraries - 171 Matching Results

Search Results

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

Indoor Localization Using Magnetic Fields

Description: Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth’s magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth’s magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth’s field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation ...
Date: December 2011
Creator: Pathapati Subbu, Kalyan Sasidhar

Inferring Social and Internal Context Using a Mobile Phone

Description: This dissertation is composed of research studies that contribute to three research areas including social context-aware computing, internal context-aware computing, and human behavioral data mining. In social context-aware computing, four studies are conducted. First, mobile phone user calling behavioral patterns are characterized in forms of randomness level where relationships among them are then identified. Next, a study is conducted to investigate the relationship between the calling behavior and organizational groups. Third, a method is presented to quantitatively define mobile social closeness and social groups, which are then used to identify social group sizes and scaling ratio. Last, based on the mobile social grouping framework, the significant role of social ties in communication patterns is revealed. In internal context-aware computing, two studies are conducted where the notions of internal context are intention and situation. For intentional context, the goal is to sense the intention of the user in placing calls. A model is thus presented for predicting future calls envisaged as a call predicted list (CPL), which makes use of call history to build a probabilistic model of calling behavior. As an incoming call predictor, CPL is a list of numbers/contacts that are the most likely to be the callers within the next hour(s), which is useful for scheduling and daily planning. As an outgoing call predictor, CPL is generated as a list of numbers/contacts that are the most likely to be dialed when the user attempts to make an outgoing call (e.g., by flipping open or unlocking the phone). This feature helps save time from having to search through a lengthy phone book. For situational context, a model is presented for sensing the user's situation (e.g., in a library, driving a car, etc.) based on embedded sensors. The sensed context is then used to switch the phone into a suitable ...
Date: December 2009
Creator: Phithakkitnukoon, Santi

The Influence of Social Network Graph Structure on Disease Dynamics in a Simulated Environment

Description: The fight against epidemics/pandemics is one of man versus nature. Technological advances have not only improved existing methods for monitoring and controlling disease outbreaks, but have also provided new means for investigation, such as through modeling and simulation. This dissertation explores the relationship between social structure and disease dynamics. Social structures are modeled as graphs, and outbreaks are simulated based on a well-recognized standard, the susceptible-infectious-removed (SIR) paradigm. Two independent, but related, studies are presented. The first involves measuring the severity of outbreaks as social network parameters are altered. The second study investigates the efficacy of various vaccination policies based on social structure. Three disease-related centrality measures are introduced, contact, transmission, and spread centrality, which are related to previously established centrality measures degree, betweenness, and closeness, respectively. The results of experiments presented in this dissertation indicate that reducing the neighborhood size along with outside-of-neighborhood contacts diminishes the severity of disease outbreaks. Vaccination strategies can effectively reduce these parameters. Additionally, vaccination policies that target individuals with high centrality are generally shown to be slightly more effective than a random vaccination policy. These results combined with past and future studies will assist public health officials in their effort to minimize the effects of inevitable disease epidemics/pandemics.
Date: December 2010
Creator: Johnson, Tina V.

Influence of Underlying Random Walk Types in Population Models on Resulting Social Network Types and Epidemiological Dynamics

Description: Epidemiologists rely on human interaction networks for determining states and dynamics of disease propagations in populations. However, such networks are empirical snapshots of the past. It will greatly benefit if human interaction networks are statistically predicted and dynamically created while an epidemic is in progress. We develop an application framework for the generation of human interaction networks and running epidemiological processes utilizing research on human mobility patterns and agent-based modeling. The interaction networks are dynamically constructed by incorporating different types of Random Walks and human rules of engagements. We explore the characteristics of the created network and compare them with the known theoretical and empirical graphs. The dependencies of epidemic dynamics and their outcomes on patterns and parameters of human motion and motives are encountered and presented through this research. This work specifically describes how the types and parameters of random walks define properties of generated graphs. We show that some configurations of the system of agents in random walk can produce network topologies with properties similar to small-world networks. Our goal is to find sets of mobility patterns that lead to empirical-like networks. The possibility of phase transitions in the graphs due to changes in the parameterization of agent walks is the focus of this research as this knowledge can lead to the possibility of disruptions to disease diffusions in populations. This research shall facilitate work of public health researchers to predict the magnitude of an epidemic and estimate resources required for mitigation.
Date: December 2016
Creator: Kolgushev, Oleg Mikhailovich

Infusing Automatic Question Generation with Natural Language Understanding

Description: Automatically generating questions from text for educational purposes is an active research area in natural language processing. The automatic question generation system accompanying this dissertation is MARGE, which is a recursive acronym for: MARGE automatically reads generates and evaluates. MARGE generates questions from both individual sentences and the passage as a whole, and is the first question generation system to successfully generate meaningful questions from textual units larger than a sentence. Prior work in automatic question generation from text treats a sentence as a string of constituents to be rearranged into as many questions as allowed by English grammar rules. Consequently, such systems overgenerate and create mainly trivial questions. Further, none of these systems to date has been able to automatically determine which questions are meaningful and which are trivial. This is because the research focus has been placed on NLG at the expense of NLU. In contrast, the work presented here infuses the questions generation process with natural language understanding. From the input text, MARGE creates a meaning analysis representation for each sentence in a passage via the DeconStructure algorithm presented in this work. Questions are generated from sentence meaning analysis representations using templates. The generated questions are automatically evaluated for question quality and importance via a ranking algorithm.
Date: December 2016
Creator: Mazidi, Karen

An Integrated Architecture for Ad Hoc Grids

Description: Extensive research has been conducted by the grid community to enable large-scale collaborations in pre-configured environments. grid collaborations can vary in scale and motivation resulting in a coarse classification of grids: national grid, project grid, enterprise grid, and volunteer grid. Despite the differences in scope and scale, all the traditional grids in practice share some common assumptions. They support mutually collaborative communities, adopt a centralized control for membership, and assume a well-defined non-changing collaboration. To support grid applications that do not confirm to these assumptions, we propose the concept of ad hoc grids. In the context of this research, we propose a novel architecture for ad hoc grids that integrates a suite of component frameworks. Specifically, our architecture combines the community management framework, security framework, abstraction framework, quality of service framework, and reputation framework. The overarching objective of our integrated architecture is to support a variety of grid applications in a self-controlled fashion with the help of a self-organizing ad hoc community. We introduce mechanisms in our architecture that successfully isolates malicious elements from the community, inherently improving the quality of grid services and extracting deterministic quality assurances from the underlying infrastructure. We also emphasize on the technology-independence of our architecture, thereby offering the requisite platform for technology interoperability. The feasibility of the proposed architecture is verified with a high-quality ad hoc grid implementation. Additionally, we have analyzed the performance and behavior of ad hoc grids with respect to several control parameters.
Date: May 2006
Creator: Amin, Kaizar Abdul Husain

Integrity Verification of Applications on RADIUM Architecture

Description: Trusted Computing capability has become ubiquitous these days, and it is being widely deployed into consumer devices as well as enterprise platforms. As the number of threats is increasing at an exponential rate, it is becoming a daunting task to secure the systems against them. In this context, the software integrity measurement at runtime with the support of trusted platforms can be a better security strategy. Trusted Computing devices like TPM secure the evidence of a breach or an attack. These devices remain tamper proof if the hardware platform is physically secured. This type of trusted security is crucial for forensic analysis in the aftermath of a breach. The advantages of trusted platforms can be further leveraged if they can be used wisely. RADIUM (Race-free on-demand Integrity Measurement Architecture) is one such architecture, which is built on the strength of TPM. RADIUM provides an asynchronous root of trust to overcome the TOC condition of DRTM. Even though the underlying architecture is trusted, attacks can still compromise applications during runtime by exploiting their vulnerabilities. I propose an application-level integrity measurement solution that fits into RADIUM, to expand the trusted computing capability to the application layer. This is based on the concept of program invariants that can be used to learn the correct behavior of an application. I used Daikon, a tool to obtain dynamic likely invariants, and developed a method of observing these properties at runtime to verify the integrity. The integrity measurement component was implemented as a Python module on top of Volatility, a virtual machine introspection tool. My approach is a first step towards integrity attestation, using hypervisor-based introspection on RADIUM and a proof of concept of application-level measurement capability.
Date: August 2015
Creator: Tarigopula, Mohan Krishna

Intelligent Memory Manager: Towards improving the locality behavior of allocation-intensive applications.

Description: Dynamic memory management required by allocation-intensive (i.e., Object Oriented and linked data structured) applications has led to a large number of research trends. Memory performance due to the cache misses in these applications continues to lag in terms of execution cycles as ever increasing CPU-Memory speed gap continues to grow. Sophisticated prefetcing techniques, data relocations, and multithreaded architectures have tried to address memory latency. These techniques are not completely successful since they require either extra hardware/software in the system or special properties in the applications. Software needed for prefetching and data relocation strategies, aimed to improve cache performance, pollutes the cache so that the technique itself becomes counter-productive. On the other hand, extra hardware complexity needed in multithreaded architectures decelerates CPU's clock, since "Simpler is Faster." This dissertation, directed to seek the cause of poor locality behavior of allocation--intensive applications, studies allocators and their impact on the cache performance of these applications. Our study concludes that service functions, in general, and memory management functions, in particular, entangle with application's code and become the major cause of cache pollution. In this dissertation, we present a novel technique that transfers the allocation and de-allocation functions entirely to a separate processor residing in chip with DRAM (Intelligent Memory Manager). Our empirical results show that, on average, 60% of the cache misses caused by allocation and de-allocation service functions are eliminated using our technique.
Date: May 2004
Creator: Rezaei, Mehran

Investigating the Extractive Summarization of Literary Novels

Description: Abstract Due to the vast amount of information we are faced with, summarization has become a critical necessity of everyday human life. Given that a large fraction of the electronic documents available online and elsewhere consist of short texts such as Web pages, news articles, scientific reports, and others, the focus of natural language processing techniques to date has been on the automation of methods targeting short documents. We are witnessing however a change: an increasingly larger number of books become available in electronic format. This means that the need for language processing techniques able to handle very large documents such as books is becoming increasingly important. This thesis addresses the problem of summarization of novels, which are long and complex literary narratives. While there is a significant body of research that has been carried out on the task of automatic text summarization, most of this work has been concerned with the summarization of short documents, with a particular focus on news stories. However, novels are different in both length and genre, and consequently different summarization techniques are required. This thesis attempts to close this gap by analyzing a new domain for summarization, and by building unsupervised and supervised systems that effectively take into account the properties of long documents, and outperform the traditional extractive summarization systems typically addressing news genre.
Date: December 2011
Creator: Ceylan, Hakan

Investigation on Segmentation, Recognition and 3D Reconstruction of Objects Based on LiDAR Data Or MRI

Description: Segmentation, recognition and 3D reconstruction of objects have been cutting-edge research topics, which have many applications ranging from environmental and medical to geographical applications as well as intelligent transportation. In this dissertation, I focus on the study of segmentation, recognition and 3D reconstruction of objects using LiDAR data/MRI. Three main works are that (I). Feature extraction algorithm based on sparse LiDAR data. A novel method has been proposed for feature extraction from sparse LiDAR data. The algorithm and the related principles have been described. Also, I have tested and discussed the choices and roles of parameters. By using correlation of neighboring points directly, statistic distribution of normal vectors at each point has been effectively used to determine the category of the selected point. (II). Segmentation and 3D reconstruction of objects based on LiDAR/MRI. The proposed method includes that the 3D LiDAR data are layered, that different categories are segmented, and that 3D canopy surfaces of individual tree crowns and clusters of trees are reconstructed from LiDAR point data based on a region active contour model. The proposed method allows for delineations of 3D forest canopy naturally from the contours of raw LiDAR point clouds. The proposed model is suitable not only for a series of ideal cone shapes, but also for other kinds of 3D shapes as well as other kinds dataset such as MRI. (III). Novel algorithms for recognition of objects based on LiDAR/MRI. Aimed to the sparse LiDAR data, the feature extraction algorithm has been proposed and applied to classify the building and trees. More importantly, the novel algorithms based on level set methods have been provided and employed to recognize not only the buildings and trees, the different trees (e.g. Oak trees and Douglas firs), but also the subthalamus nuclei (STNs). By using the novel algorithms based ...
Date: May 2015
Creator: Tang, Shijun

Joint Schemes for Physical Layer Security and Error Correction

Description: The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A cipher-based cryptosystem is also presented in this research. The complexity of this scheme is reduced compared to conventional schemes. The securities of the ciphers are analyzed against known-plaintext and chosen-plaintext attacks and are found to be secure. Randomization test was also conducted on these schemes and the results are presented. For the proof of concept, the schemes were implemented in software and hardware and these shows a reduction in hardware usage compared to conventional schemes. As a result, joint schemes for error correction and security provide security to the physical layer of wireless communication systems, a layer in the protocol stack where currently little or no security is implemented. In this physical layer security approach, the properties of powerful error correcting codes are exploited to deliver reliability to the intended parties, high security against eavesdroppers and efficiency in communication system. The notion of a highly secure and reliable physical layer has the potential to significantly change how communication system designers and users think of the physical layer since the error control codes employed in this work will have the dual roles of both reliability and security.
Date: August 2011
Creator: Adamo, Oluwayomi Bamidele

Keywords in the mist: Automated keyword extraction for very large documents and back of the book indexing.

Description: This research addresses the problem of automatic keyphrase extraction from large documents and back of the book indexing. The potential benefits of automating this process are far reaching, from improving information retrieval in digital libraries, to saving countless man-hours by helping professional indexers creating back of the book indexes. The dissertation introduces a new methodology to evaluate automated systems, which allows for a detailed, comparative analysis of several techniques for keyphrase extraction. We introduce and evaluate both supervised and unsupervised techniques, designed to balance the resource requirements of an automated system and the best achievable performance. Additionally, a number of novel features are proposed, including a statistical informativeness measure based on chi statistics; an encyclopedic feature that taps into the vast knowledge base of Wikipedia to establish the likelihood of a phrase referring to an informative concept; and a linguistic feature based on sophisticated semantic analysis of the text using current theories of discourse comprehension. The resulting keyphrase extraction system is shown to outperform the current state of the art in supervised keyphrase extraction by a large margin. Moreover, a fully automated back of the book indexing system based on the keyphrase extraction system was shown to lead to back of the book indexes closely resembling those created by human experts.
Date: May 2008
Creator: Csomai, Andras

Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams

Description: This research addresses problems in designing analog and mixed-signal (AMS) systems by bridging the gap between system-level and circuit-level simulation by making simulations fast like system-level and accurate like circuit-level. The tools proposed include metamodel integrated Verilog-AMS based design exploration flows. The research involves design centering, metamodel generation flows for creating efficient behavioral models, and Verilog-AMS integration techniques for model realization. The core of the proposed solution is transistor-level and layout-level metamodeling and their incorporation in Verilog-AMS. Metamodeling is used to construct efficient and layout-accurate surrogate models for AMS system building blocks. Verilog-AMS, an AMS hardware description language, is employed to build surrogate model implementations that can be simulated with industrial standard simulators. The case-study circuits and systems include an operational amplifier (OP-AMP), a voltage-controlled oscillator (VCO), a charge-pump phase-locked loop (PLL), and a continuous-time delta-sigma modulator (DSM). The minimum and maximum error rates of the proposed OP-AMP model are 0.11 % and 2.86 %, respectively. The error rates for the PLL lock time and power estimation are 0.7 % and 3.0 %, respectively. The OP-AMP optimization using the proposed approach is ~17000× faster than the transistor-level model based approach. The optimization achieves a ~4× power reduction for the OP-AMP design. The PLL parasitic-aware optimization achieves a 10× speedup and a 147 µW power reduction. Thus the experimental results validate the effectiveness of the proposed solution.
Date: May 2013
Creator: Zheng, Geng

Maintaining Web Applications Integrity Running on RADIUM

Description: Computer security attacks take place due to the presence of vulnerabilities and bugs in software applications. Bugs and vulnerabilities are the result of weak software architecture and lack of standard software development practices. Despite the fact that software companies are investing millions of dollars in the research and development of software designs security risks are still at large. In some cases software applications are found to carry vulnerabilities for many years before being identified. A recent such example is the popular Heart Bleed Bug in the Open SSL/TSL. In today’s world, where new software application are continuously being developed for a varied community of users; it’s highly unlikely to have software applications running without flaws. Attackers on computer system securities exploit these vulnerabilities and bugs and cause threat to privacy without leaving any trace. The most critical vulnerabilities are those which are related to the integrity of the software applications. Because integrity is directly linked to the credibility of software application and data it contains. Here I am giving solution of maintaining web applications integrity running on RADIUM by using daikon. Daikon generates invariants, these invariants are used to maintain the integrity of the web application and also check the correct behavior of web application at run time on RADIUM architecture in case of any attack or malware. I used data invariants and program flow invariants in my solution to maintain the integrity of web-application against such attack or malware. I check the behavior of my proposed invariants at run-time using Lib-VMI/Volatility memory introspection tool. This is a novel approach and proof of concept toward maintaining web application integrity on RADIUM.
Date: August 2015
Creator: Ur-Rehman, Wasi

Measuring Semantic Relatedness Using Salient Encyclopedic Concepts

Description: While pragmatics, through its integration of situational awareness and real world relevant knowledge, offers a high level of analysis that is suitable for real interpretation of natural dialogue, semantics, on the other end, represents a lower yet more tractable and affordable linguistic level of analysis using current technologies. Generally, the understanding of semantic meaning in literature has revolved around the famous quote ``You shall know a word by the company it keeps''. In this thesis we investigate the role of context constituents in decoding the semantic meaning of the engulfing context; specifically we probe the role of salient concepts, defined as content-bearing expressions which afford encyclopedic definitions, as a suitable source of semantic clues to an unambiguous interpretation of context. Furthermore, we integrate this world knowledge in building a new and robust unsupervised semantic model and apply it to entail semantic relatedness between textual pairs, whether they are words, sentences or paragraphs. Moreover, we explore the abstraction of semantics across languages and utilize our findings into building a novel multi-lingual semantic relatedness model exploiting information acquired from various languages. We demonstrate the effectiveness and the superiority of our mono-lingual and multi-lingual models through a comprehensive set of evaluations on specialized synthetic datasets for semantic relatedness as well as real world applications such as paraphrase detection and short answer grading. Our work represents a novel approach to integrate world-knowledge into current semantic models and a means to cross the language boundary for a better and more robust semantic relatedness representation, thus opening the door for an improved abstraction of meaning that carries the potential of ultimately imparting understanding of natural language to machines.
Date: August 2011
Creator: Hassan, Samer

Measuring Vital Signs Using Smart Phones

Description: Smart phones today have become increasingly popular with the general public for its diverse abilities like navigation, social networking, and multimedia facilities to name a few. These phones are equipped with high end processors, high resolution cameras, built-in sensors like accelerometer, orientation-sensor, light-sensor, and much more. According to comScore survey, 25.3% of US adults use smart phones in their daily lives. Motivated by the capability of smart phones and their extensive usage, I focused on utilizing them for bio-medical applications. In this thesis, I present a new application for a smart phone to quantify the vital signs such as heart rate, respiratory rate and blood pressure with the help of its built-in sensors. Using the camera and a microphone, I have shown how the blood pressure and heart rate can be determined for a subject. People sometimes encounter minor situations like fainting or fatal accidents like car crash at unexpected times and places. It would be useful to have a device which can measure all vital signs in such an event. The second part of this thesis demonstrates a new mode of communication for next generation 9-1-1 calls. In this new architecture, the call-taker will be able to control the multimedia elements in the phone from a remote location. This would help the call-taker or first responder to have a better control over the situation. Transmission of the vital signs measured using the smart phone can be a life saver in critical situations. In today's voice oriented 9-1-1 calls, the dispatcher first collects critical information (e.g., location, call-back number) from caller, and assesses the situation. Meanwhile, the dispatchers constantly face a "60-second dilemma"; i.e., within 60 seconds, they need to make a complicated but important decision, whether to dispatch and, if so, what to dispatch. The dispatchers often feel that ...
Date: December 2010
Creator: Chandrasekaran, Vikram

Mediation on XQuery Views

Description: The major goal of information integration is to provide efficient and easy-to-use access to multiple heterogeneous data sources with a single query. At the same time, one of the current trends is to use standard technologies for implementing solutions to complex software problems. In this dissertation, I used XML and XQuery as the standard technologies and have developed an extended projection algorithm to provide a solution to the information integration problem. In order to demonstrate my solution, I implemented a prototype mediation system called Omphalos based on XML related technologies. The dissertation describes the architecture of the system, its metadata, and the process it uses to answer queries. The system uses XQuery expressions (termed metaqueries) to capture complex mappings between global schemas and data source schemas. The system then applies these metaqueries in order to rewrite a user query on a virtual global database (representing the integrated view of the heterogeneous data sources) to a query (termed an outsourced query) on the real data sources. An extended XML document projection algorithm was developed to increase the efficiency of selecting the relevant subset of data from an individual data source to answer the user query. The system applies the projection algorithm to decompose an outsourced query into atomic queries which are each executed on a single data source. I also developed an algorithm to generate integrating queries, which the system uses to compose the answers from the atomic queries into a single answer to the original user query. I present a proof of both the extended XML document projection algorithm and the query integration algorithm. An analysis of the efficiency of the new extended algorithm is also presented. Finally I describe a collaborative schema-matching tool that was implemented to facilitate maintaining metadata.
Date: December 2006
Creator: Peng, Xiaobo

Metamodeling-based Fast Optimization of Nanoscale Ams-socs

Description: Modern consumer electronic systems are mostly based on analog and digital circuits and are designed as analog/mixed-signal systems on chip (AMS-SoCs). the integration of analog and digital circuits on the same die makes the system cost effective. in AMS-SoCs, analog and mixed-signal portions have not traditionally received much attention due to their complexity. As the fabrication technology advances, the simulation times for AMS-SoC circuits become more complex and take significant amounts of time. the time allocated for the circuit design and optimization creates a need to reduce the simulation time. the time constraints placed on designers are imposed by the ever-shortening time to market and non-recurrent cost of the chip. This dissertation proposes the use of a novel method, called metamodeling, and intelligent optimization algorithms to reduce the design time. Metamodel-based ultra-fast design flows are proposed and investigated. Metamodel creation is a one time process and relies on fast sampling through accurate parasitic-aware simulations. One of the targets of this dissertation is to minimize the sample size while retaining the accuracy of the model. in order to achieve this goal, different statistical sampling techniques are explored and applied to various AMS-SoC circuits. Also, different metamodel functions are explored for their accuracy and application to AMS-SoCs. Several different optimization algorithms are compared for global optimization accuracy and convergence. Three different AMS circuits, ring oscillator, inductor-capacitor voltage-controlled oscillator (LC-VCO) and phase locked loop (PLL) that are present in many AMS-SoC are used in this study for design flow application. Metamodels created in this dissertation provide accuracy with an error of less than 2% from the physical layout simulations. After optimal sampling investigation, metamodel functions and optimization algorithms are ranked in terms of speed and accuracy. Experimental results show that the proposed design flow provides roughly 5,000x speedup over conventional design flows. Thus, ...
Date: May 2012
Creator: Garitselov, Oleg

A Minimally Supervised Word Sense Disambiguation Algorithm Using Syntactic Dependencies and Semantic Generalizations

Description: Natural language is inherently ambiguous. For example, the word "bank" can mean a financial institution or a river shore. Finding the correct meaning of a word in a particular context is a task known as word sense disambiguation (WSD), which is essential for many natural language processing applications such as machine translation, information retrieval, and others. While most current WSD methods try to disambiguate a small number of words for which enough annotated examples are available, the method proposed in this thesis attempts to address all words in unrestricted text. The method is based on constraints imposed by syntactic dependencies and concept generalizations drawn from an external dictionary. The method was tested on standard benchmarks as used during the SENSEVAL-2 and SENSEVAL-3 WSD international evaluation exercises, and was found to be competitive.
Date: December 2005
Creator: Faruque, Md. Ehsanul

Mobile agent security through multi-agent cryptographic protocols.

Description: An increasingly promising and widespread topic of research in distributed computing is the mobile agent paradigm: code travelling and performing computations on remote hosts in an autonomous manner. One of the biggest challenges faced by this new paradigm is security. The issue of protecting sensitive code and data carried by a mobile agent against tampering from a malicious host is particularly hard but important. Based on secure multi-party computation, a recent research direction shows the feasibility of a software-only solution to this problem, which had been deemed impossible by some researchers previously. The best result prior to this dissertation is a single-agent protocol which requires the participation of a trusted third party. Our research employs multi-agent protocols to eliminate the trusted third party, resulting in a protocol with minimum trust assumptions. This dissertation presents one of the first formal definitions of secure mobile agent computation, in which the privacy and integrity of the agent code and data as well as the data provided by the host are all protected. We present secure protocols for mobile agent computation against static, semi-honest or malicious adversaries without relying on any third party or trusting any specific participant in the system. The security of our protocols is formally proven through standard proof technique and according to our formal definition of security. Our second result is a more practical agent protocol with strong security against most real-world host attacks. The security features are carefully analyzed, and the practicality is demonstrated through implementation and experimental study on a real-world mobile agent platform. All these protocols rely heavily on well-established cryptographic primitives, such as encrypted circuits, threshold decryption, and oblivious transfer. Our study of these tools yields new contributions to the general field of cryptography. Particularly, we correct a well-known construction of the encrypted circuit and give ...
Date: May 2004
Creator: Xu, Ke

Modeling Alcohol Consumption Using Blog Data

Description: How do the content and writing style of people who drink alcohol beverages stand out from non-drinkers? How much information can we learn about a person's alcohol consumption behavior by reading text that they have authored? This thesis attempts to extend the methods deployed in authorship attribution and authorship profiling research into the domain of automatically identifying the human action of drinking alcohol beverages. I examine how a psycholinguistics dictionary (the Linguistics Inquiry and Word Count lexicon, developed by James Pennebaker), together with Kenneth Burke's concept of words as symbols of human action, and James Wertsch's concept of mediated action provide a framework for analyzing meaningful data patterns from the content of blogs written by consumers of alcohol beverages. The contributions of this thesis to the research field are twofold. First, I show that it is possible to automatically identify blog posts that have content related to the consumption of alcohol beverages. And second, I provide a framework and tools to model human behavior through text analysis of blog data.
Date: May 2013
Creator: Koh, Kok Chuan

Modeling and Analysis of Intentional And Unintentional Security Vulnerabilities in a Mobile Platform

Description: Mobile phones are one of the essential parts of modern life. Making a phone call is not the main purpose of a smart phone anymore, but merely one of many other features. Online social networking, chatting, short messaging, web browsing, navigating, and photography are some of the other features users enjoy in modern smartphones, most of which are provided by mobile apps. However, with this advancement, many security vulnerabilities have opened up in these devices. Malicious apps are a major threat for modern smartphones. According to Symantec Corp., by the middle of 2013, about 273,000 Android malware apps were identified. It is a complex issue to protect everyday users of mobile devices from the attacks of technologically competent hackers, illegitimate users, trolls, and eavesdroppers. This dissertation emphasizes the concept of intention identification. Then it looks into ways to utilize this intention identification concept to enforce security in a mobile phone platform. For instance, a battery monitoring app requiring SMS permissions indicates suspicious intention as battery monitoring usually does not need SMS permissions. Intention could be either the user's intention or the intention of an app. These intentions can be identified using their behavior or by using their source code. Regardless of the intention type, identifying it, evaluating it, and taking actions by using it to prevent any malicious intentions are the main goals of this research. The following four different security vulnerabilities are identified in this research: Malicious apps, spammers and lurkers in social networks, eavesdroppers in phone conversations, and compromised authentication. These four vulnerabilities are solved by detecting malware applications, identifying malicious users in a social network, enhancing the encryption system of a phone communication, and identifying user activities using electroencephalogram (EEG) for authentication. Each of these solutions are constructed using the idea of intention identification. Furthermore, many of ...
Date: December 2014
Creator: Fazeen, Mohamed & Issadeen, Mohamed

Modeling and Analysis of Next Generation 9-1-1 Emergency Medical Dispatch Protocols

Description: Emergency Medical Dispatch Protocols are guidelines that a 9-1-1 dispatcher uses to evaluate the nature of emergency, resources to send and the nature of help provided to the 9-1-1 caller. The current Dispatch Protocols are based on voice only call. But the Next Generation 9-1-1 (NG9-1-1) architecture will allow multimedia emergency calls. In this thesis I analyze and model the Emergency Medical Dispatch Protocols for NG9-1-1 architecture. I have identified various technical aspects to improve the NG9-1-1 Dispatch Protocols. The devices (smartphone) at the caller end have advanced to a point where they can be used to send and receive video, pictures and text. There are sensors embedded in them that can be used for initial diagnosis of the injured person. There is a need to improve the human computer (smartphone) interface to take advantage of technology so that callers can easily make use of various features available to them. The dispatchers at the 9-1-1 call center can make use of these new protocols to improve the quality and the response time. They will have capability of multiple media streams to interact with the caller and the first responders.The specific contributions in this thesis include developing applications that use smartphone sensors. The CPR application uses the smartphone to help administer effective CPR even if the person is not trained. The application makes the CPR process closed loop, i.e., the person who administers the CPR as well as the 9-1-1 operator receive feedback and prompt from the application about the correctness of the CPR. The breathing application analyzes the quality of breathing of the affected person and automatically sends the information to the 9-1-1 operator. In order to improve the Human Computer Interface at the caller and the operator end, I have analyzed Fitts law and extended it so that it ...
Date: August 2013
Creator: Gupta, Neeraj Kant

Modeling and Simulation of the Vector-Borne Dengue Disease and the Effects of Regional Variation of Temperature in the Disease Prevalence in Homogenous and Heterogeneous Human Populations

Description: The history of mitigation programs to contain vector-borne diseases is a story of successes and failures. Due to the complex interplay among multiple factors that determine disease dynamics, the general principles for timely and specific intervention for incidence reduction or eradication of life-threatening diseases has yet to be determined. This research discusses computational methods developed to assist in the understanding of complex relationships affecting vector-borne disease dynamics. A computational framework to assist public health practitioners with exploring the dynamics of vector-borne diseases, such as malaria and dengue in homogenous and heterogeneous populations, has been conceived, designed, and implemented. The framework integrates a stochastic computational model of interactions to simulate horizontal disease transmission. The intent of the computational modeling has been the integration of stochasticity during simulation of the disease progression while reducing the number of necessary interactions to simulate a disease outbreak. While there are improvements in the computational time reducing the number of interactions needed for simulating disease dynamics, the realization of interactions can remain computationally expensive. Using multi-threading technology to improve performance upon the original computational model, multi-threading experimental results have been tested and reported. In addition, to the contact model, the modeling of biological processes specific to the corresponding pathogen-carrier vector to increase the specificity of the vector-borne disease has been integrated. Last, automation for requesting, retrieving, parsing, and storing specific weather data and geospatial information from federal agencies to study the differences between homogenous and heterogeneous populations has been implemented.
Date: August 2016
Creator: Bravo-Salgado, Angel D