UNT Libraries - 70 Matching Results

Search Results

Probabilistic Analysis of Contracting Ebola Virus Using Contextual Intelligence

Description: The outbreak of the Ebola virus was declared a Public Health Emergency of International Concern by the World Health Organisation (WHO). Due to the complex nature of the outbreak, the Centers for Disease Control and Prevention (CDC) had created interim guidance for monitoring people potentially exposed to Ebola and for evaluating their intended travel and restricting the movements of carriers when needed. Tools to evaluate the risk of individuals and groups of individuals contracting the disease could mitigate the growing anxiety and fear. The goal is to understand and analyze the nature of risk an individual would face when he/she comes in contact with a carrier. This thesis presents a tool that makes use of contextual data intelligence to predict the risk factor of individuals who come in contact with the carrier.
Date: May 2017
Creator: Gopala Krishnan, Arjun

Procedural Generation of Content for Online Role Playing Games

Description: Video game players demand a volume of content far in excess of the ability of game designers to create it. For example, a single quest might take a week to develop and test, which means that companies such as Blizzard are spending millions of dollars each month on new content for their games. As a result, both players and developers are frustrated with the inability to meet the demand for new content. By generating content on-demand, it is possible to create custom content for each player based on player preferences. It is also possible to make use of the current world state during generation, something which cannot be done with current techniques. Using developers to create rules and assets for a content generator instead of creating content directly will lower development costs as well as reduce the development time for new game content to seconds rather than days. This work is part of the field of computational creativity, and involves the use of computers to create aesthetically pleasing game content, such as terrain, characters, and quests. I demonstrate agent-based terrain generation, and economic modeling of game spaces. I also demonstrate the autonomous generation of quests for online role playing games, and the ability to play these quests using an emulated Everquest server.
Date: August 2014
Creator: Doran, Jonathon

The Procedural Generation of Interesting Sokoban Levels

Description: As video games continue to become larger, more complex, and more costly to produce, research into methods to make game creation easier and faster becomes more valuable. One such research topic is procedural generation, which allows the computer to assist in the creation of content. This dissertation presents a new algorithm for the generation of Sokoban levels. Sokoban is a grid-based transport puzzle which is computational interesting due to being PSPACE-complete. Beyond just generating levels, the question of whether or not the levels created by this algorithm are interesting to human players is explored. A study was carried out comparing player attention while playing hand made levels versus their attention during procedurally generated levels. An auditory Stroop test was used to measure attention without disrupting play.
Date: May 2015
Creator: Taylor, Joshua

Process-Voltage-Temperature Aware Nanoscale Circuit Optimization

Description: Embedded systems which are targeted towards portable applications are required to have low power consumption because such portable devices are typically powered by batteries. During the memory accesses of such battery operated portable systems, including laptops, cell phones and other devices, a significant amount of power or energy is consumed which significantly affects the battery life. Therefore, efficient and leakage power saving cache designs are needed for longer operation of battery powered applications. Design engineers have limited control over many design parameters of the circuit and hence face many chal-lenges due to inherent process technology variations, particularly on static random access memory (SRAM) circuit design. As CMOS process technologies scale down deeper into the nanometer regime, the push for high performance and reliable systems becomes even more challenging. As a result, developing low-power designs while maintaining better performance of the circuit becomes a very difficult task. Furthermore, a major need for accurate analysis and optimization of various forms of total power dissipation and performance in nanoscale CMOS technologies, particularly in SRAMs, is another critical issue to be considered. This dissertation proposes power-leakage and static noise margin (SNM) analysis and methodologies to achieve optimized static random access memories (SRAMs). Alternate topologies of SRAMs, mainly a 7-transistor SRAM, are taken as a case study throughout this dissertation. The optimized cache designs are process-voltage-temperature (PVT) tolerant and consider individual cells as well as memory arrays.
Date: December 2010
Creator: Thakral, Garima

Radio Resource Control Approaches for LTE-Advanced Femtocell Networks

Description: The architecture of mobile networks has dramatically evolved in order to fulfill the growing demands on wireless services and data. The radio resources, which are used by the current mobile networks, are limited while the users demands are substantially increasing. In the future, tremendous Internet applications are expected to be served by mobile networks. Therefore, increasing the capacity of mobile networks has become a vital issue. Heterogeneous networks (HetNets) have been considered as a promising paradigm for future mobile networks. Accordingly, the concept of small cell has been introduced in order to increase the capacity of the mobile networks. A femtocell network is a kind of small cell networks. Femtocells are deployed within macrocells coverage. Femtocells cover small areas and operate with low transmission power while providing high capacity. Also, UEs can be offloaded from macrocells to femtocells. Thus, the capacity can be increased. However, this will introduce different technical challenges. The interference has become one of the key challenges for deploying femtocells within a certain macrocells coverage. Undesirable impact of the interference can degrade the performance of the mobile networks. Therefore, radio resource management mechanisms are needed in order to address key challenges of deploying femtocells. The objective of this work is to introduce radio resource control approaches, which are used to increase mobile networks' capacity and alleviate undesirable impact of the interference. In addition, proposed radio resource control approaches ensure the coexistence between macrocell and femtocells based on LTE-Advanced environment. Firstly, a novel mechanism is proposed in order to address the interference challenge. The proposed approach mitigates the impact of interference based on controlling radio sub-channels' assignment and dynamically adjusting the transmission power. Secondly, a dynamic strategy is proposed for the FFR mechanism. In the FFR mechanism, the whole spectrum is divided into four fixed sub-channels and each ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2018
Creator: Alotaibi, Sultan Radhi

Reading with Robots: A Platform to Promote Cognitive Exercise through Identification and Discussion of Creative Metaphor in Books

Description: Maintaining cognitive health is often a pressing concern for aging adults, and given the world's shifting age demographics, it is impractical to assume that older adults will be able to rely on individualized human support for doing so. Recently, interest has turned toward technology as an alternative. Companion robots offer an attractive vehicle for facilitating cognitive exercise, but the language technologies guiding their interactions are still nascent; in elder-focused human-robot systems proposed to date, interactions have been limited to motion or buttons and canned speech. The incapacity of these systems to autonomously participate in conversational discourse limits their ability to engage users at a cognitively meaningful level. I addressed this limitation by developing a platform for human-robot book discussions, designed to promote cognitive exercise by encouraging users to consider the authors' underlying intentions in employing creative metaphors. The choice of book discussions as the backdrop for these conversations has an empirical basis in neuro- and social science research that has found that reading often, even in late adulthood, has been correlated with a decreased likelihood to exhibit symptoms of cognitive decline. The more targeted focus on novel metaphors within those conversations stems from prior work showing that processing novel metaphors is a cognitively challenging task, for young adults and even more so in older adults with and without dementia. A central contribution arising from the work was the creation of the first computational method for modelling metaphor novelty in word pairs. I show that the method outperforms baseline strategies as well as a standard metaphor detection approach, and additionally discover that incorporating a sentence-based classifier as a preliminary filtering step when applying the model to new books results in a better final set of scored word pairs. I trained and evaluated my methods using new, large corpora from two sources, ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2018
Creator: Parde, Natalie

Real Time Assessment of a Video Game Player's State of Mind Using Off-the-Shelf Electroencephalography

Description: The focus of this research is on the development of a real time application that uses a low cost EEG headset to measure a player's state of mind while they play a video game. Using data collected using the Emotiv EPOC headset, various EEG processing techniques are tested to find ways of measuring a person's engagement and arousal levels. The ability to measure a person's engagement and arousal levels provide an opportunity to develop a model that monitor a person's flow while playing video games. Identifying when certain events occur, like when the player dies, will make it easier to identify when a player has left a state of flow. The real time application Brainwave captures data from the wireless Emotiv EPOC headset. Brainwave converts the raw EEG data into more meaningful brainwave band frequencies. Utilizing the brainwave frequencies the program trains multiple machine learning algorithms with data designed to identify when the player dies. Brainwave runs while the player plays through a video gaming monitoring their engagement and arousal levels for changes that cause the player to leave a state of flow. Brainwave reports to researchers and developers when the player dies along with the identification of the players exit of the state of flow.
Date: December 2016
Creator: McMahan, Timothy

Resource Management in Wireless Networks

Description: A local call admission control (CAC) algorithm for third generation wireless networks was designed and implemented, which allows for the simulation of network throughput for different spreading factors and various mobility scenarios. A global CAC algorithm is also implemented and used as a benchmark since it is inherently optimized; it yields the best possible performance but has an intensive computational complexity. Optimized local CAC algorithm achieves similar performance as global CAC algorithm at a fraction of the computational cost. Design of a dynamic channel assignment algorithm for IEEE 802.11 wireless systems is also presented. Channels are assigned dynamically depending on the minimal interference generated by the neighboring access points on a reference access point. Analysis of dynamic channel assignment algorithm shows an improvement by a factor of 4 over the default settings of having all access points use the same channel, resulting significantly higher network throughput.
Date: August 2006
Creator: Arepally, Anurag

Scene Analysis Using Scale Invariant Feature Extraction and Probabilistic Modeling

Description: Conventional pattern recognition systems have two components: feature analysis and pattern classification. For any object in an image, features could be considered as the major characteristic of the object either for object recognition or object tracking purpose. Features extracted from a training image, can be used to identify the object when attempting to locate the object in a test image containing many other objects. To perform reliable scene analysis, it is important that the features extracted from the training image are detectable even under changes in image scale, noise and illumination. Scale invariant feature has wide applications such as image classification, object recognition and object tracking in the image processing area. In this thesis, color feature and SIFT (scale invariant feature transform) are considered to be scale invariant feature. The classification, recognition and tracking result were evaluated with novel evaluation criterion and compared with some existing methods. I also studied different types of scale invariant feature for the purpose of solving scene analysis problems. I propose probabilistic models as the foundation of analysis scene scenario of images. In order to differential the content of image, I develop novel algorithms for the adaptive combination for multiple features extracted from images. I demonstrate the performance of the developed algorithm on several scene analysis tasks, including object tracking, video stabilization, medical video segmentation and scene classification.
Date: August 2011
Creator: Shen, Yao

Secure and Trusted Execution for Virtualization Workloads

Description: In this dissertation, we have analyzed various security and trustworthy solutions for modern computing systems and proposed a framework that will provide holistic security and trust for the entire lifecycle of a virtualized workload. The framework consists of 3 novel techniques and a set of guidelines. These 3 techniques provide necessary elements for secure and trusted execution environment while the guidelines ensure that the virtualized workload remains in a secure and trusted state throughout its lifecycle. We have successfully implemented and demonstrated that the framework provides security and trust guarantees at the time of launch, any time during the execution, and during an update of the virtualized workload. Given the proliferation of virtualization from cloud servers to embedded systems, techniques presented in this dissertation can be implemented on most computing systems.
Date: August 2018
Creator: Kotikela, Srujan D

Sensing and Decoding Brain States for Predicting and Enhancing Human Behavior, Health, and Security

Description: The human brain acts as an intelligent sensor by helping in effective signal communication and execution of logical functions and instructions, thus, coordinating all functions of the human body. More importantly, it shows the potential to combine prior knowledge with adaptive learning, thus ensuring constant improvement. These qualities help the brain to interact efficiently with both, the body (brain-body) as well as the environment (brain-environment). This dissertation attempts to apply the brain-body-environment interactions (BBEI) to elevate human existence and enhance our day-to-day experiences. For instance, when one stepped out of the house in the past, one had to carry keys (for unlocking), money (for purchasing), and a phone (for communication). With the advent of smartphones, this scenario changed completely and today, it is often enough to carry just one's smartphone because all the above activities can be performed with a single device. In the future, with advanced research and progress in BBEI interactions, one will be able to perform many activities by dictating it in one's mind without any physical involvement. This dissertation aims to shift the paradigm of existing brain-computer-interfaces from just ‘control' to ‘monitor, control, enhance, and restore' in three main areas - healthcare, transportation safety, and cryptography. In healthcare, measures were developed for understanding brain-body interactions by correlating cerebral autoregulation with brain signals. The variation in estimated blood flow of brain (obtained through EEG) was detected with evoked change in blood pressure, thus, enabling EEG metrics to be used as a first hand screening tool to check impaired cerebral autoregulation. To enhance road safety, distracted drivers' behavior in various multitasking scenarios while driving was identified by significant changes in the time-frequency spectrum of the EEG signals. A distraction metric was calculated to rank the severity of a distraction task that can be used as an intuitive measure ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Bajwa, Garima

Sentence Similarity Analysis with Applications in Automatic Short Answer Grading

Description: In this dissertation, I explore unsupervised techniques for the task of automatic short answer grading. I compare a number of knowledge-based and corpus-based measures of text similarity, evaluate the effect of domain and size on the corpus-based measures, and also introduce a novel technique to improve the performance of the system by integrating automatic feedback from the student answers. I continue to combine graph alignment features with lexical semantic similarity measures and employ machine learning techniques to show that grade assignment error can be reduced compared to a system that considers only lexical semantic measures of similarity. I also detail a preliminary attempt to align the dependency graphs of student and instructor answers in order to utilize a structural component that is necessary to simulate human-level grading of student answers. I further explore the utility of these techniques to several related tasks in natural language processing including the detection of text similarity, paraphrase, and textual entailment.
Date: August 2012
Creator: Mohler, Michael A.G.

Simulation of Dengue Outbreak in Thailand

Description: The dengue virus has become widespread worldwide in recent decades. It has no specific treatment and affects more than 40% of the entire population in the world. In Thailand, dengue has been a health concern for more than half a century. The highest number of cases in one year was 174,285 in 1987, leading to 1,007 deaths. In the present day, dengue is distributed throughout the entire country. Therefore, dengue has become a major challenge for public health in terms of both prevention and control of outbreaks. Different methodologies and ways of dealing with dengue outbreaks have been put forward by researchers. Computational models and simulations play an important role, as they have the ability to help researchers and officers in public health gain a greater understanding of the virus's epidemic activities. In this context, this dissertation presents a new framework, Modified Agent-Based Modeling (mABM), a hybrid platform between a mathematical model and a computational model, to simulate a dengue outbreak in human and mosquito populations. This framework improves on the realism of former models by utilizing the reported data from several Thai government organizations, such as the Thai Ministry of Public Health (MoPH), the National Statistical Office, and others. Additionally, its implementation takes into account the geography of Thailand, as well as synthetic mosquito and synthetic human populations. mABM can be used to represent human behavior in a large population across variant distances by specifying demographic factors and assigning mobility patterns for weekdays, weekends, and holidays for the synthetic human population. The mosquito dynamic population model (MDP), which is a component of the mABM framework, is used for representing the synthetic mosquito population dynamic and their ecology by integrating the regional model to capture the effect of dengue outbreak. The two synthetic populations can be linked to each other ...
Date: August 2018
Creator: Meesumrarn, Thiraphat

Social Network Simulation and Mining Social Media to Advance Epidemiology

Description: Traditional Public Health decision-support can benefit from the Web and social media revolution. This dissertation presents approaches to mining social media benefiting public health epidemiology. Through discovery and analysis of trends in Influenza related blogs, a correlation to Centers for Disease Control and Prevention (CDC) influenza-like-illness patient reporting at sentinel health-care providers is verified. A second approach considers personal beliefs of vaccination in social media. A vaccine for human papillomavirus (HPV) was approved by the Food and Drug Administration in May 2006. The virus is present in nearly all cervical cancers and implicated in many throat and oral cancers. Results from automatic sentiment classification of HPV vaccination beliefs are presented which will enable more accurate prediction of the vaccine's population-level impact. Two epidemic models are introduced that embody the intimate social networks related to HPV transmission. Ultimately, aggregating these methodologies with epidemic and social network modeling facilitate effective development of strategies for targeted interventions.
Date: August 2009
Creator: Corley, Courtney David

Source and Channel Coding Strategies for Wireless Sensor Networks

Description: In this dissertation, I focus on source coding techniques as well as channel coding techniques. I addressed the challenges in WSN by developing (1) a new source coding strategy for erasure channels that has better distortion performance compared to MDC; (2) a new cooperative channel coding strategy for multiple access channels that has better channel outage performances compared to MIMO; (3) a new source-channel cooperation strategy to accomplish source-to-fusion center communication that reduces system distortion and improves outage performance. First, I draw a parallel between the 2x2 MDC scheme and the Alamouti's space time block coding (STBC) scheme and observe the commonality in their mathematical models. This commonality allows us to observe the duality between the two diversity techniques. Making use of this duality, I develop an MDC scheme with pairwise complex correlating transform. Theoretically, I show that MDC scheme results in: 1) complete elimination of the estimation error when only one descriptor is received; 2) greater efficiency in recovering the stronger descriptor (with larger variance) from the weaker descriptor; and 3) improved performance in terms of minimized distortion as the quantization error gets reduced. Experiments are also performed on real images to demonstrate these benefits. Second, I present a two-phase cooperative communication strategy and an optimal power allocation strategy to transmit sensor observations to a fusion center in a large-scale sensor network. Outage probability is used to evaluate the performance of the proposed system. Simulation results demonstrate that: 1) when signal-to-noise ratio is low, the performance of the proposed system is better than that of the MIMO system over uncorrelated slow fading Rayleigh channels; 2) given the transmission rate and the total transmission SNR, there exists an optimal power allocation that minimizes the outage probability; 3) on correlated slow fading Rayleigh channels, channel correlation will degrade the system performance ...
Date: December 2012
Creator: Li, Li

Space and Spectrum Engineered High Frequency Components and Circuits

Description: With the increasing demand on wireless and portable devices, the radio frequency front end blocks are required to feature properties such as wideband, high frequency, multiple operating frequencies, low cost and compact size. However, the current radio frequency system blocks are designed by combining several individual frequency band blocks into one functional block, which increase the cost and size of devices. To address these issues, it is important to develop novel approaches to further advance the current design methodologies in both space and spectrum domains. In recent years, the concept of artificial materials has been proposed and studied intensively in RF/Microwave, Terahertz, and optical frequency range. It is a combination of conventional materials such as air, wood, metal and plastic. It can achieve the material properties that have not been found in nature. Therefore, the artificial material (i.e. meta-materials) provides design freedoms to control both the spectrum performance and geometrical structures of radio frequency front end blocks and other high frequency systems. In this dissertation, several artificial materials are proposed and designed by different methods, and their applications to different high frequency components and circuits are studied. First, quasi-conformal mapping (QCM) method is applied to design plasmonic wave-adapters and couplers working at the optical frequency range. Second, inverse QCM method is proposed to implement flattened Luneburg lens antennas and parabolic antennas in the microwave range. Third, a dual-band compact directional coupler is realized by applying artificial transmission lines. In addition, a fully symmetrical coupler with artificial lumped element structure is also implemented. Finally, a tunable on-chip inductor, compact CMOS transmission lines, and metamaterial-based interconnects are proposed using artificial metal structures. All the proposed designs are simulated in full-wave 3D electromagnetic solvers, and the measurement results agree well with the simulation results. These artificial material-based novel design methodologies pave the way ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2015
Creator: Arigong, Bayaner

Statistical Strategies for Efficient Signal Detection and Parameter Estimation in Wireless Sensor Networks

Description: This dissertation investigates data reduction strategies from a signal processing perspective in centralized detection and estimation applications. First, it considers a deterministic source observed by a network of sensors and develops an analytical strategy for ranking sensor transmissions based on the magnitude of their test statistics. The benefit of the proposed strategy is that the decision to transmit or not to transmit observations to the fusion center can be made at the sensor level resulting in significant savings in transmission costs. A sensor network based on target tracking application is simulated to demonstrate the benefits of the proposed strategy over the unconstrained energy approach. Second, it considers the detection of random signals in noisy measurements and evaluates the performance of eigenvalue-based signal detectors. Due to their computational simplicity, robustness and performance, these detectors have recently received a lot of attention. When the observed random signal is correlated, several researchers claim that the performance of eigenvalue-based detectors exceeds that of the classical energy detector. However, such claims fail to consider the fact that when the signal is correlated, the optimal detector is the estimator-correlator and not the energy detector. In this dissertation, through theoretical analyses and Monte Carlo simulations, eigenvalue-based detectors are shown to be suboptimal when compared to the energy detector and the estimator-correlator.
Date: December 2013
Creator: Ayeh, Eric

Trajectory Analytics

Description: The numerous surveillance videos recorded by a single stationary wide-angle-view camera persuade the use of a moving point as the representation of each small-size object in wide video scene. The sequence of the positions of each moving point can be used to generate a trajectory containing both spatial and temporal information of object's movement. In this study, we investigate how the relationship between two trajectories can be used to recognize multi-agent interactions. For this purpose, we present a simple set of qualitative atomic disjoint trajectory-segment relations which can be utilized to represent the relationships between two trajectories. Given a pair of adjacent concurrent trajectories, we segment the trajectory pair to get the ordered sequence of related trajectory-segments. Each pair of corresponding trajectory-segments then is assigned a token associated with the trajectory-segment relation, which leads to the generation of a string called a pairwise trajectory-segment relationship sequence. From a group of pairwise trajectory-segment relationship sequences, we utilize an unsupervised learning algorithm, particularly the k-medians clustering, to detect interesting patterns that can be used to classify lower-level multi-agent activities. We evaluate the effectiveness of the proposed approach by comparing the activity classes predicted by our method to the actual classes from the ground-truth set obtained using the crowdsourcing technique. The results show that the relationships between a pair of trajectories can signify the low-level multi-agent activities.
Date: May 2015
Creator: Santiteerakul, Wasana

Uncertainty Evaluation in Large-scale Dynamical Systems: Theory and Applications

Description: Significant research efforts have been devoted to large-scale dynamical systems, with the aim of understanding their complicated behaviors and managing their responses in real-time. One pivotal technological obstacle in this process is the existence of uncertainty. Although many of these large-scale dynamical systems function well in the design stage, they may easily fail when operating in realistic environment, where environmental uncertainties modulate system dynamics and complicate real-time predication and management tasks. This dissertation aims to develop systematic methodologies to evaluate the performance of large-scale dynamical systems under uncertainty, as a step toward real-time decision support. Two uncertainty evaluation approaches are pursued: the analytical approach and the effective simulation approach. The analytical approach abstracts the dynamics of original stochastic systems, and develops tractable analysis (e.g., jump-linear analysis) for the approximated systems. Despite the potential bias introduced in the approximation process, the analytical approach provides rich insights valuable for evaluating and managing the performance of large-scale dynamical systems under uncertainty. When a system’s complexity and scale are beyond tractable analysis, the effective simulation approach becomes very useful. The effective simulation approach aims to use a few smartly selected simulations to quickly evaluate a complex system’s statistical performance. This approach was originally developed to evaluate a single uncertain variable. This dissertation extends the approach to be scalable and effective for evaluating large-scale systems under a large-number of uncertain variables. While a large portion of this dissertation focuses on the development of generic methods and theoretical analysis that are applicable to broad large-scale dynamical systems, many results are illustrated through a representative large-scale system application on strategic air traffic management application, which is concerned with designing robust management plans subject to a wide range of weather possibilities at 2-15 hours look-ahead time.
Date: December 2014
Creator: Zhou, Yi (Software engineer)

Validation and Evaluation of Emergency Response Plans through Agent-Based Modeling and Simulation

Description: Biological emergency response planning plays a critical role in protecting the public from possible devastating results of sudden disease outbreaks. These plans describe the distribution of medical countermeasures across a region using limited resources within a restricted time window. Thus, the ability to determine that such a plan will be feasible, i.e. successfully provide service to affected populations within the time limit, is crucial. Many of the current efforts to validate plans are in the form of live drills and training, but those may not test plan activation at the appropriate scale or with sufficient numbers of participants. Thus, this necessitates the use of computational resources to aid emergency managers and planners in developing and evaluating plans before they must be used. Current emergency response plan generation software packages such as RE-PLAN or RealOpt, provide rate-based validation analyses. However, these types of analysis may neglect details of real-world traffic dynamics. Therefore, this dissertation presents Validating Emergency Response Plan Execution Through Simulation (VERPETS), a novel, computational system for the agent-based simulation of biological emergency response plan activation. This system converts raw road network, population distribution, and emergency response plan data into a format suitable for simulation, and then performs these simulations using SUMO, or Simulations of Urban Mobility, to simulate realistic traffic dynamics. Additionally, high performance computing methodologies were utilized to decrease agent load on simulations and improve performance. Further strategies, such as use of agent scaling and a time limit on simulation execution, were also examined. Experimental results indicate that the time to plan completion, i.e. the time when all individuals of the population have received medication, determined by VERPETS aligned well with current alternate methodologies. It was determined that the dynamic of traffic congestion at the POD itself was one of the major factors affecting the completion time of ...
Date: May 2018
Creator: Helsing, Joseph

The Value of Everything: Ranking and Association with Encyclopedic Knowledge

Description: This dissertation describes WikiRank, an unsupervised method of assigning relative values to elements of a broad coverage encyclopedic information source in order to identify those entries that may be relevant to a given piece of text. The valuation given to an entry is based not on textual similarity but instead on the links that associate entries, and an estimation of the expected frequency of visitation that would be given to each entry based on those associations in context. This estimation of relative frequency of visitation is embodied in modifications to the random walk interpretation of the PageRank algorithm. WikiRank is an effective algorithm to support natural language processing applications. It is shown to exceed the performance of previous machine learning algorithms for the task of automatic topic identification, providing results comparable to that of human annotators. Second, WikiRank is found useful for the task of recognizing text-based paraphrases on a semantic level, by comparing the distribution of attention generated by two pieces of text using the encyclopedic resource as a common reference. Finally, WikiRank is shown to have the ability to use its base of encyclopedic knowledge to recognize terms from different ontologies as describing the same thing, and thus allowing for the automatic generation of mapping links between ontologies. The conclusion of this thesis is that the "knowledge access heuristic" is valuable and that a ranking process based on a large encyclopedic resource can form the basis for an extendable general purpose mechanism capable of identifying relevant concepts by association, which in turn can be effectively utilized for enumeration and comparison at a semantic level.
Date: December 2009
Creator: Coursey, Kino High

Variability-aware low-power techniques for nanoscale mixed-signal circuits.

Description: New circuit design techniques that accommodate lower supply voltages necessary for portable systems need to be integrated into the semiconductor intellectual property (IP) core. Systems that once worked at 3.3 V or 2.5 V now need to work at 1.8 V or lower, without causing any performance degradation. Also, the fluctuation of device characteristics caused by process variation in nanometer technologies is seen as design yield loss. The numerous parasitic effects induced by layouts, especially for high-performance and high-speed circuits, pose a problem for IC design. Lack of exact layout information during circuit sizing leads to long design iterations involving time-consuming runs of complex tools. There is a strong need for low-power, high-performance, parasitic-aware and process-variation-tolerant circuit design. This dissertation proposes methodologies and techniques to achieve variability, power, performance, and parasitic-aware circuit designs. Three approaches are proposed: the single iteration automatic approach, the hybrid Monte Carlo and design of experiments (DOE) approach, and the corner-based approach. Widely used mixed-signal circuits such as analog-to-digital converter (ADC), voltage controlled oscillator (VCO), voltage level converter and active pixel sensor (APS) have been designed at nanoscale complementary metal oxide semiconductor (CMOS) and subjected to the proposed methodologies. The effectiveness of the proposed methodologies has been demonstrated through exhaustive simulations. Apart from these methodologies, the application of dual-oxide and dual-threshold techniques at circuit level in order to minimize power and leakage is also explored.
Date: May 2009
Creator: Ghai, Dhruva V.