This system will be undergoing maintenance Friday, March 31 from 9:00 AM to 10:00 AM CDT.

UNT Libraries - Browse

ABOUT BROWSE FEED

Impact of actual interference on capacity and call admission control in a CDMA network.

Description: An overwhelming number of models in the literature use average inter-cell interference for the calculation of capacity of a Code Division Multiple Access (CDMA) network. The advantage gained in terms of simplicity by using such models comes at the cost of rendering the exact location of a user within a cell irrelevant. We calculate the actual per-user interference and analyze the effect of user-distribution within a cell on the capacity of a CDMA network. We show that even though the capacity obtained using average interference is a good approximation to the capacity calculated using actual interference for a uniform user distribution, the deviation can be tremendously large for non-uniform user distributions. Call admission control (CAC) algorithms are responsible for efficient management of a network's resources while guaranteeing the quality of service and grade of service, i.e., accepting the maximum number of calls without affecting the quality of service of calls already present in the network. We design and implement global and local CAC algorithms, and through simulations compare their network throughput and blocking probabilities for varying mobility scenarios. We show that even though our global CAC is better at resource management, the lack of substantial gain in network throughput and exponential increase in complexity makes our optimized local CAC algorithm a much better choice for a given traffic distribution profile.
Date: May 2004
Creator: Parvez, Asad

Improved Approximation Algorithms for Geometric Packing Problems With Experimental Evaluation

Description: Geometric packing problems are NP-complete problems that arise in VLSI design. In this thesis, we present two novel algorithms using dynamic programming to compute exactly the maximum number of k x k squares of unit size that can be packed without overlap into a given n x m grid. The first algorithm was implemented and ran successfully on problems of large input up to 1,000,000 nodes for different values. A heuristic based on the second algorithm is implemented. This heuristic is fast in practice, but may not always be giving optimal times in theory. However, over a wide range of random data this version of the algorithm is giving very good solutions very fast and runs on problems of up to 100,000,000 nodes in a grid and different ranges for the variables. It is also shown that this version of algorithm is clearly superior to the first algorithm and has shown to be very efficient in practice.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2003
Creator: Song, Yongqiang

Intelligent Memory Management Heuristics

Description: Automatic memory management is crucial in implementation of runtime systems even though it induces a significant computational overhead. In this thesis I explore the use of statistical properties of the directed graph describing the set of live data to decide between garbage collection and heap expansion in a memory management algorithm combining the dynamic array represented heaps with a mark and sweep garbage collector to enhance its performance. The sampling method predicting the density and the distribution of useful data is implemented as a partial marking algorithm. The algorithm randomly marks the nodes of the directed graph representing the live data at different depths with a variable probability factor p. Using the information gathered by the partial marking algorithm in the current step and the knowledge gathered in the previous iterations, the proposed empirical formula predicts with reasonable accuracy the density of live nodes on the heap, to decide between garbage collection and heap expansion. The resulting heuristics are tested empirically and shown to improve overall execution performance significantly in the context of the Jinni Prolog compiler's runtime system.
Date: December 2003
Creator: Panthulu, Pradeep

Modeling Complex Forest Ecology in a Parallel Computing Infrastructure

Description: Effective stewardship of forest ecosystems make it imperative to measure, monitor, and predict the dynamic changes of forest ecology. Measuring and monitoring provides us a picture of a forest's current state and the necessary data to formulate models for prediction. However, societal and natural events alter the course of a forest's development. A simulation environment that takes into account these events will facilitate forest management. In this thesis, we describe an efficient parallel implementation of a land cover use model, Mosaic, and discuss the development efforts to incorporate spatial interaction and succession dynamics into the model. To evaluate the performance of our implementation, an extensive set of simulation experiments was carried out using a dataset representing the H.J. Andrews Forest in the Oregon Cascades. Results indicate that a significant reduction in the simulation execution time of our parallel model can be achieved as compared to uni-processor simulations.
Date: August 2003
Creator: Mayes, John

Modeling the Impact and Intervention of a Sexually Transmitted Disease: Human Papilloma Virus

Description: Many human papilloma virus (HPV) types are sexually transmitted and HPV DNA types 16, 18, 31, and 45 account for more than 75% if all cervical dysplasia. Candidate vaccines are successfully completing US Federal Drug Agency (FDA) phase III testing and several drug companies are in licensing arbitration. Once this vaccine become available it is unlikely that 100% vaccination coverage will be probable; hence, the need for vaccination strategies that will have the greatest reduction on the endemic prevalence of HPV. This thesis introduces two discrete-time models for evaluating the effect of demographic-biased vaccination strategies: one model incorporates temporal demographics (i.e., age) in population compartments; the other non-temporal demographics (i.e., race, ethnicity). Also presented is an intuitive Web-based interface that was developed to allow the user to evaluate the effects on prevalence of a demographic-biased intervention by tailoring the model parameters to specific demographics and geographical region.
Date: May 2006
Creator: Corley, Courtney D.

Multi-Agent Architecture for Internet Information Extraction and Visualization

Description: The World Wide Web is one of the largest sources of information; more and more applications are being developed daily to make use of this information. This thesis presents a multi-agent architecture that deals with some of the issues related to Internet data extraction. The primary issue addresses the reliable, efficient and quick extraction of data through the use of HTTP performance monitoring agents. A second issue focuses on how to make use of available data to take decisions and alert the user when there is change in data; this is done with the help of user agents that are equipped with a Defeasible reasoning interpreter. An additional issue is the visualization of extracted data; this is done with the aid of VRML visualization agents. The cited issues are discussed using stock portfolio management as an example application.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2000
Creator: Gollapally, Devender R.

The Multipath Fault-Tolerant Protocol for Routing in Packet-Switched Communication Network

Description: In order to provide improved service quality to applications, networks need to address the need for reliability of data delivery. Reliability can be improved by incorporating fault tolerance into network routing, wherein a set of multiple routes are used for routing between a given source and destination. This thesis proposes a new fault-tolerant protocol, called the Multipath Fault Tolerant Protocol for Routing (MFTPR), to improve the reliability of network routing services. The protocol is based on a multipath discovery algorithm, the Quasi-Shortest Multipath (QSMP), and is designed to work in conjunction with the routing protocol employed by the network. MFTPR improves upon the QSMP algorithm by finding more routes than QSMP, and also provides for maintenance of these routes in the event of failure of network components. In order to evaluate the resilience of a pair of paths to failure, this thesis proposes metrics that evaluate the non-disjointness of a pair of paths and measure the probability of simultaneous failure of these paths. The performance of MFTPR to find alternate routes based on these metrics is analyzed through simulation.
Date: May 2003
Creator: Krishnan, Anupama

Performance comparison of data distribution management strategies in large-scale distributed simulation.

Description: Data distribution management (DDM) is a High Level Architecture/Run-time Infrastructure (HLA/RTI) service that manages the distribution of state updates and interaction information in large-scale distributed simulations. The key to efficient DDM is to limit and control the volume of data exchanged during the simulation, to relay data to only those hosts requiring the data. This thesis focuses upon different DDM implementations and strategies. This thesis includes analysis of three DDM methods including the fixed grid-based, dynamic grid-based, and region-based methods. Also included is the use of multi-resolution modeling with various DDM strategies and analysis of the performance effects of aggregation/disaggregation with these strategies. Running numerous federation executions, I simulate four different scenarios on a cluster of workstations with a mini-RTI Kit framework and propose a set of benchmarks for a comparison of the DDM schemes. The goals of this work are to determine the most efficient model for applying each DDM scheme, discover the limitations of the scalability of the various DDM methods, evaluate the effects of aggregation/disaggregation on performance and resource usage, and present accepted benchmarks for use in future research.
Date: May 2004
Creator: Dzermajko, Caron

Performance Evaluation of Data Integrity Mechanisms for Mobile Agents

Description: With the growing popularity of e-commerce applications that use software agents, the protection of mobile agent data has become imperative. To that end, the performance of four methods that protect the data integrity of mobile agents is evaluated. The methods investigated include existing approaches known as the Partial Result Authentication Codes, Hash Chaining, and Set Authentication Code methods, and a technique of our own design, called the Modified Set Authentication Code method, which addresses the limitations of the Set Authentication Code method. The experiments were run using the DADS agent system (developed at the Network Research Laboratory at UNT), for which a Data Integrity Module was designed. The experimental results show that our Modified Set Authentication Code technique performed comparably to the Set Authentication Code method.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2003
Creator: Gunupudi, Vandana

Resource Allocation in Mobile and Wireless Networks

Description: The resources (memory, power and bandwidth) are limited in wireless and mobile networks. Previous research has shown that the quality of service (QoS) of the mobile client can be improved through efficient resources management. This thesis contains two areas of research that are strongly interrelated. In the first area of research, we extended the MoSync Algorithm, a network application layer media synchronization algorithm, to allow play-out of multimedia packets by the base station upon the mobile client in a First-In-First-Out (FIFO), Highest-Priority-First (PQ), Weighted Fair-Queuing (WFQ) and Round-Robin (RR) order. In the second area of research, we make modifications to the DSR and TORA routing algorithms to make them energy aware routing protocols. Our research shows that the QoS of the mobile client can be drastically improved through effective resource allocation.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2003
Creator: Owens II, Harold

Routing Optimization in Wireless Ad Hoc and Wireless Sensor Networks

Description: Wireless ad hoc networks are expected to play an important role in civilian and military settings where wireless access to wired backbone is either ineffective or impossible. Wireless sensor networks are effective in remote data acquisition. Congestion control and power consumption in wireless ad hoc networks have received a lot of attention in recent research. Several algorithms have been proposed to reduce congestion and power consumption in wireless ad hoc and sensor networks. In this thesis, we focus upon two schemes, which deal with congestion control and power consumption issues. This thesis consists of two parts. In the first part, we describe a randomization scheme for congestion control in dynamic source routing protocol, which we refer to as RDSR. We also study a randomization scheme for GDSR protocol, a GPS optimized variant of DSR. We discuss RDSR and RGDSR implementations and present extensive simulation experiments to study their performance. Our results indicate that both RGDSR and RDSR protocols outperform their non-randomized counterparts by decreasing the number of route query packets. Furthermore, a probabilistic congestion control scheme based on local tuning of routing protocol parameters is shown to be feasible. In the second part we present a simulation based performance study of energy aware data centric routing protocol, EAD, proposed by X. Cheng and A. Boukerche. EAD reduces power consumption by requiring only a small percentage of the network to stay awake. Our experiments show that EAD outperforms the well-known LEACH scheme.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2003
Creator: Joseph, Linus

A Security Model for Mobile Agents using X.509 Proxy Certificates

Description: Mobile agent technology presents an attractive alternative to the client-server paradigm for several network and real-time applications. However, for most applications, the lack of a viable agent security model has limited the adoption of the agent paradigm. This thesis presents a security model for mobile agents based on a security infrastructure for Computational Grids, and specifically, on X.509 Proxy Certificates. Proxy Certificates serve as credentials for Grid applications, and their primary purpose is temporary delegation of authority. Exploiting the similarity between Grid applications and mobile agent applications, this thesis motivates the use of Proxy Certificates as credentials for mobile agents. A new extension for Proxy Certificates is proposed in order to make them suited to mobile agent applications, and mechanisms are presented for agent-to-host authentication, restriction of agent privileges, and secure delegation of authority during spawning of new agents. Finally, the implementation of the proposed security mechanisms as modules within a multi-lingual and modular agent infrastructure, the Distributed Agent Delivery System, is discussed.
Date: December 2002
Creator: Raghunathan, Subhashini

A Study of Perceptually Tuned, Wavelet Based, Rate Scalable, Image and Video Compression

Description: In this dissertation, first, we have proposed and implemented a new perceptually tuned wavelet based, rate scalable, and color image encoding/decoding system based on the human perceptual model. It is based on state-of-the-art research on embedded wavelet image compression technique, Contrast Sensitivity Function (CSF) for Human Visual System (HVS) and extends this scheme to handle optimal bit allocation among multiple bands, such as Y, Cb, and Cr. Our experimental image codec shows very exciting results in compression performance and visual quality comparing to the new wavelet based international still image compression standard - JPEG 2000. On the other hand, our codec also shows significant better speed performance and comparable visual quality in comparison to the best codec available in rate scalable color image compression - CSPIHT that is based on Set Partition In Hierarchical Tree (SPIHT) and Karhunen-Loeve Transform (KLT). Secondly, a novel wavelet based interframe compression scheme has been developed and put into practice. It is based on the Flexible Block Wavelet Transform (FBWT) that we have developed. FBWT based interframe compression is very efficient in both compression and speed performance. The compression performance of our video codec is compared with H263+. At the same bit rate, our encoder, being comparable to the H263+ scheme, with a slightly lower (Peak Signal Noise Ratio (PSNR) value, produces a more visually pleasing result. This implementation also preserves scalability of wavelet embedded coding technique. Thirdly, the scheme to handle optimal bit allocation among color bands for still imagery has been modified and extended to accommodate the spatial-temporal sensitivity of the HVS model. The bit allocation among color bands based on Kelly's spatio-temporal CSF model is designed to achieve the perceptual optimum for human eyes. A perceptually tuned, wavelet based, rate scalable video encoding/decoding system has been designed and implemented based on this ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2002
Creator: Wei, Ming

Temporally Correct Algorithms for Transaction Concurrency Control in Distributed Databases

Description: Many activities are comprised of temporally dependent events that must be executed in a specific chronological order. Supportive software applications must preserve these temporal dependencies. Whenever the processing of this type of an application includes transactions submitted to a database that is shared with other such applications, the transaction concurrency control mechanisms within the database must also preserve the temporal dependencies. A basis for preserving temporal dependencies is established by using (within the applications and databases) real-time timestamps to identify and order events and transactions. The use of optimistic approaches to transaction concurrency control can be undesirable in such situations, as they allow incorrect results for database read operations. Although the incorrectness is detected prior to transaction committal and the corresponding transaction(s) restarted, the impact on the application or entity that submitted the transaction can be too costly. Three transaction concurrency control algorithms are proposed in this dissertation. These algorithms are based on timestamp ordering, and are designed to preserve temporal dependencies existing among data-dependent transactions. The algorithms produce execution schedules that are equivalent to temporally ordered serial schedules, where the temporal order is established by the transactions' start times. The algorithms provide this equivalence while supporting currency to the extent out-of-order commits and reads. With respect to the stated concern with optimistic approaches, two of the proposed algorithms are risk-free and return to read operations only committed data-item values. Risk with the third algorithm is greatly reduced by its conservative bias. All three algorithms avoid deadlock while providing risk-free or reduced-risk operation. The performance of the algorithms is determined analytically and with experimentation. Experiments are performed using functional database management system models that implement the proposed algorithms and the well-known Conservative Multiversion Timestamp Ordering algorithm.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2001
Creator: Tuck, Terry W.

Visualization of Surfaces and 3D Vector Fields

Description: Visualization of trivariate functions and vector fields with three components in scientific computation is still a hard problem in compute graphic area. People build their own visualization packages for their special purposes. And there exist some general-purpose packages (MatLab, Vis5D), but they all require extensive user experience on setting all the parameters in order to generate images. We present a simple package to produce simplified but productive images of 3-D vector fields. We used this method to render the magnetic field and current as solutions of the Ginzburg-Landau equations on a 3-D domain.
Date: August 2002
Creator: Li, Wentong

XML-Based Agent Scripts and Inference Mechanisms

Description: Natural language understanding has been a persistent challenge to researchers in various computer science fields, in a number of applications ranging from user support systems to entertainment and online teaching. A long term goal of the Artificial Intelligence field is to implement mechanisms that enable computers to emulate human dialogue. The recently developed ALICEbots, virtual agents with underlying AIML scripts, by A.L.I.C.E. foundation, use AIML scripts - a subset of XML - as the underlying pattern database for question answering. Their goal is to enable pattern-based, stimulus-response knowledge content to be served, received and processed over the Web, or offline, in the manner similar to HTML and XML. In this thesis, we describe a system that converts the AIML scripts to Prolog clauses and reuses them as part of a knowledge processor. The inference mechanism developed in this thesis is able to successfully match the input pattern with our clauses database even if words are missing. We also emulate the pattern deduction algorithm of the original logic deduction mechanism. Our rules, compatible with Semantic Web standards, bring structure to the meaningful content of Web pages and support interactive content retrieval using natural language.
Date: August 2003
Creator: Sun, Guili