UNT Libraries - Browse


Analysis of Acid Gas Emissions in the Combustion of the Binder Enhanced d-RDF by Ion Chromatography

Description: Waste-to-energy has become an attractive alternative to landfills. One concern in this development is the release of pollutants in the combustion process. The binder enhanced d-RDF pellets satisfy the requirements of environmental acceptance, chemical/biological stability, and being storeable. The acid gas emissions of combusting d-RDF pellets with sulfur-rich coal were analyzed by ion chromatography and decreased when d-RDF pellets were utilized. The results imply the possibility of using d-RDF pellets to substitute for sulfur-rich coal as fuel, and also substantiate the effectiveness of a binder, calcium hydroxide, in decreasing emissions of SOx. In order to perform the analysis of the combustion sample, sampling and sample pretreatment methods prior to the IC analysis and the first derivative detection mode in IC are investigated as well. At least two trapping reagents are necessary for collecting acid gases: one for hydrogen halides, and the other for NOx and SOx. Factors affecting the absorption of acid gases are studied, and the strength of an oxidizing agent is the main factor affecting the collection of NOx and SOx. The absorption preference series of acid gases are determined and the absorption models of acid gases in trapping reagents are derived from the analytical results. To prevent the back-flushing of trapping reagents between impingers when leak-checking, a design for the sampling train is suggested, which can be adopted in sample collections. Several reducing agents are studied for pretreating the sample collected in alkali-permanganate media. Besides the recommendation of the hydrogen peroxide solution in EPA method, methanol and formic acid are worth considering as alternate reducing agents in the pretreatment of alkaline-permanganate media prior to IC analysis. The first derivative conductivity detection mode is developed and used in IC system. It is efficient for the detection and quantification of overlapping peaks as well as being applicable for non-overlapping ...
Date: August 1988
Creator: Jen, Jen-Fon

The Analysis of Fire Debris Using Nuclear Magnetic Resonance Spectroscopy

Description: This paper describes a new technique for analyzing fire debris using nuclear magnetic resonance (NMR) spectroscopy. Petroleum distillates, which are commonly used accelerants, were weathered, burned, and steamdistilled. These, as well as virgin samples of the accelerants, were analyzed by gas chromatography and nuclear magnetic resonance spectroscopy. In addition, solvent studies and detectibility limit studies were conducted. The use of NMR is described as a valuable adjunct to the existing methods of analysis.
Date: August 1981
Creator: Bryce, Kenneth L.

Analysis of PAH and PCB Emissions from the Combustion of dRDF and the Nondestructive Analysis of Stamp Adhesives

Description: This work includes two unrelated areas of research. The first portion of this work involved combusting densified refuse derived fuel (dRDF) with coal and studying the effect that Ca(0H)2 binder had on reducing polycyclic aromatic hydrocarbon (PAH) and polychlorinated biphenyl (PCB) emissions. The second area of work was directed at developing nondestructive infrared techniques in order to aid in the analysis of postage stamp adhesives. With Americans generating 150-200 million tons a year of Municipal Solid Waste (MSW) and disposing of nearly ninety percent of it in landfills, it is easy to understand why American landfills are approaching capacity. One alternative to landfilling is to process the MSW into RDF. There are technical and environmental problems associated with RDF. This work provides some answers concerning the amount of PAH and PCB emissions generated via the combustion of RDF with coal. It was found that the Ca(OH)2 binder greatly reduced both the PAH and the PCB emissions. In fact, PAH emissions at the ten-percent level were reduced more by using the binder than by the pollution control equipment. If the Ca(0H)2 binder can reduce not only PAH and PCB emissions, but also other noxious emissions, such as acid gases or dioxin, RDF technology could soon be the answer to the current landfill problems. The second portion of this work focused on developing a method to analyze stamp adhesives nondestructively. Using this method, it was fairly easy to differentiate among the three different types of adhesives that have been used by the United States Postal Service: gum arabic, dextrin, and polyvinyl alcohol. Differences caused by changes in chemicals added to the adhesives were also detected. Also, forgeries were detected with as much success, if not more, than by conventional methods. This work also led to the construction of equipment that allows large ...
Date: May 1989
Creator: Poslusny, Matthew

The Analysis of PCDD and PCDF Emissions from the Cofiring of Densified Refuse Derived Fuel and Coal

Description: The United States leads the world in per capita production of Municipal Solid Waste (MSW), generating approximately 200 million tons per year. By 2000 A.D. the US EPA predicts a 20% rise in these numbers. Currently the major strategies of MSW disposal are (i) landfill and (ii) incineration. The amount of landfill space in the US is on a rapid decline. There are -10,000 landfill sites in the country, of which only 65-70% are still in use. The Office of Technology Assessment (OTA) predicts an 80% landfill closure rate in the next 20 years. The development of a viable energy resource from MSW, in the form of densified Refuse Derived Fuel (dRDF), provides solutions to the problems of MSW generation and fossil fuel depletions. Every 2 tons of MSW yields approximately 1 ton of dRDF. Each ton of dRDF has an energy equivalent of more than two barrels of oil. At current production rates the US is "throwing away" over 200,000,000 barrels of oil a year. In order to be considered a truly viable product dRDF must be extensively studied; in terms of it's cost of production, it's combustion properties, and it's potential for environmental pollution. In 1987 a research team from the University of North Texas, in conjunction with the US DOE and Argonne National Laboratory (ANL), cofired over 550 tons of dRDF and bdRDF with a high sulfur Kentucky coal in a boiler at ANL. This work examines the emission rates of polychlorinated dioxins (PCDDs) and furans (PCDFs) during the combustion of the dRDF, bdRDF, and coal. Even at levels of 50% by Btu content of dRDF in the fuel feedstock, emission rates of PCDDs and PCDFs were below detection limits. The dRDF is shown to be an environmentally acceptable product, which could help resolve one of the ...
Date: August 1990
Creator: Moore, Paul, 1962-

An Analysis of the Effectiveness of Computer Assisted Instruction in General Chemistry at an Urban University.

Description: The science-major General Chemistry sequence offered at the University of Houston has been investigated with respect to the effectiveness of recent incorporation of various levels of computer technology. As part of this investigation, questionnaire responses, student evaluations and grade averages and distributions from up to the last ten years have been analyzed and compared. Increased use of web-based material is both popular and effective, particularly with respect to providing extra information and supplemental questions. Instructor contact via e-mail is also well-received. Both uses of technology should be encouraged. In contrast, electronic classroom presentation is less popular. While initial use may lead to improved grades and retention, these levels decrease quickly, possibly due to a reduction in instructor spontaneity.
Date: May 2002
Creator: McGuffey, Angela

Analysis of Trace Amounts of Adulterants Found in Powders/Supplements Utilizing Direct Inject, Nanomanipulation, and Mass Spectrometry

Description: The regulations of many food products in the United States have been made and followed very well but unfortunately some products are not put under such rigorous standards as others. This leads to products being sold, that are thought to be healthy, but in reality contain unknown ingredients that may be hazardous to the consumers. With the use of several instrumentations and techniques the detection, characterization and identification of these unknown contaminates can be determined. Both the AZ-100 and the TE2000 inverted microscope were used for visual characterizations, image collection and to help guide the extraction. Direct analyte-probed nanoextraction (DAPNe) technique and nanospray ionization mass spectrometry (NSI-MS) was the technique used for examination and identification of all adulterants. A Raman imaging technique was than introduced and has proven to be a rapid, non-destructive and distinctive way to localize a specific adulterant. By compiling these techniques then applying them to the FDA supplied test samples three major adulterants were detected and identified.
Date: August 2016
Creator: Nnaji, Chinyere

ANTI Preference of the Pyramidalized Radical Center to the Two Fluorines in Difluoro Cyclic Compounds.

Description: An extensive study of disubstituted cycloalkanes like CnH2n where n=3,4,5 and 6 using DFT((U)B3LYP/6-31G(d) and 6-311+G(2df,2p)) calculations is presented focusing on the effect of pyramidalization of the radical center. A potential energy surface (PES) analysis shows that the radical prefers to pyramidalize anti to the two cis fluorines in the disubstituted cycloalkanes. The degree of pyramidalization for 1,2-difluorocyclopropyl radical is 43.9o away from the cis fluorines whereas for 1,3-difluorocyclobutyl radical, 1,3-difluorocyclopentyl radical and 1,3-difluorocyclohexyl radical is 3.8o, 5.4o and 14.5o respectively away from the cis fluorines. The importance of this pyramidality effect in these compounds is discussed in context with the carbon-hydrogen bond dissociation energies (BDE's) because the preference of the radical centers to pyramidalize anti to the fluorines affects the bond dissociation energy. Importance of steric effect and unfavorable electronic interactions have been extensively explored in planar permethylated cyclobutadiene (Me4CBD) and cyclooctatetraene (Me8COT) using ((U)B3LYP/6-31G(d) and 6-311+G(2df,2p)) calculations. It is thought that steric interactions dominate electronic interactions in Me8COT, while this works opposite in case of Me4CBT. Instead, in Me4CBD the number of unfavorable electronic interactions between π bonds and out-of-plane hydrogens plays the dominant role in determining the relative energies. Interactions between the π bonds of CBD and the out-of-plane hydrogens on carbons attached to the four-membered ring becomes very interesting when the ring size changes. With ethano bridge on the cyclobutadiene ring interaction with the diagonal bonds results in non-bonding AOs across the other diagonal having the opposite phase in the highest occupied (HO)MO. If the HOMO and LUMO are switched, bis-ethano-bridged tetrahedrane is formed. It is suggested that bis-ethano-bridged tetrahedrane is thermodynamically more stable than bis-ethano-bridged cyclobutadienes. While the reverse is true for unsubstituted cyclobutadienes. The ability of ethano bridges to reverse the usual order is because it causes the doubly-bonded carbons to pyramidalize.
Date: May 2008
Creator: Tanna, Jigisha

Application of the Correlation Consistent Composite Approach to Biological Systems and Noncovalent Interactions

Description: Advances in computing capabilities have facilitated the application of quantum mechanical methods to increasingly larger and more complex chemical systems, including weakly interacting and biologically relevant species. One such ab initio-based composite methodology, the correlation consistent composite approach (ccCA), has been shown to be reliable for the prediction of enthalpies of formation and reaction energies of main group species in the gas phase to within 1 kcal mol-1, on average, of well-established experiment, without dependence on experimental parameterization or empirical corrections. In this collection of work, ccCA has been utilized to determine the proton affinities of deoxyribonucleosides within an ONIOM framework (ONIOM-ccCA) and to predict accurate enthalpies of formation for organophosphorus compounds. Despite the complexity of these systems, ccCA is shown to result in enthalpies of formation to within ~2 kcal mol-1 of experiment and predict reliable reaction energies for systems with little to no experimental data. New applications for the ccCA method have also been introduced, expanding the utility of ccCA to solvated systems and complexes with significant noncovalent interactions. By incorporating the SMD solvation model into the ccCA formulation, the Solv-ccCA method is able to predict the pKa values of nitrogen systems to within 0.7 pKa unit (less than 1.0 kcal mol-1), overall. A hydrogen bonding constant has also been developed for use with weakly interacting dimers and small cluster compounds, resulting in ccCA interaction energies for water clusters and dimers of the S66 set to within 1.0 kcal mol-1 of well-established theoretical values.
Date: May 2015
Creator: Riojas, Amanda G.

Applications of Nanomanipulation Coupled to Nanospray Mass Spectrometry in Trace Fiber Analysis and Cellular Lipid Analysis.

Description: The novel instrumentation of nanomanipulation coupled to nanospray mass spectrometry and its applications are presented. The nanomanipulator has the resolution of 10nm step sizes allowing for specific fine movement used to probe and characterize objects of interest. Nanospray mass spectrometry only needs a minimum sample volume of 300nl and a minimum sample size of 300attograms to analyze an analyte making it the ideal instrument to couple to nanomanipulation. The nanomanipulator is mounted to an inverted microscope and consists of 4 nano-positioners; these nano-positioners hold end-effectors and other tools used for manipulation. This original coupling has been used to enhance the current abilities of cellular probing and trace fiber analysis. Experiments have been performed to demonstrate the functionality of this instrument and its capabilities. Histidine and caffeine have been sampled directly from single fibers and analyzed. Lipid bodies from cotton seeds have been sampled indirectly and analyzed. The few applications demonstrated are only the beginning of nanomanipulation coupled to nanospray mass spectrometry and the possible applications are numerous especially with the ability to design and fabricate new end-effectors with unique abilities. Future study will be done to further the applications in direct cellular probing including toxicology studies and organelle analysis of single cells. Further studies will be directed in forensic applications of this instrument including gunshot residue sampled from fibers.
Date: December 2008
Creator: Ledbetter, Nicole

Applications of Single Reference Methods to Multi-Reference Problems

Description: Density functional theory is an efficient and useful method of solving single-reference computational chemistry problems, however it struggles with multi-reference systems. Modifications have been developed in order to improve the capabilities of density functional theory. In this work, density functional theory has been successfully applied to solve multi-reference systems with large amounts of non-dynamical correlation by use of modifications. It has also been successfully applied for geometry optimizations for lanthanide trifluorides.
Date: May 2015
Creator: Jeffrey, Chris C.

An Approach Towards the Total Synthesis of Clonostachydiol

Description: The syntheses of the unsymmetrical 14-membered bismacrolides have been reviewed. A total synthesis of clonostachydiol, the latest to join this family, has been attempted using trimethylsilyl acetylene as the builiding block and palladium catalyzed reactions for the formation of key bonds. The alkyne groups were introduced by Stille coupling of trimethylstannylethynyltrimethylsilane with an acid chloride for one fragment and by addition of lithiotrimethylsilyl acetylene to an aldehyde for the other. Lactic acid derivatives were chosen as starting materials for both fragments, thus introducing two of the chiral centers. The remaining stereocenters were introduced using stereoselective reductions of ketones.
Date: August 1995
Creator: Maiti, Tushar B. (Tushar Baran)

Baeyer-Villiger Oxidation of 1,7- & 1,9-dibromopentacyclo[,6.03,10.05,9]undecane-8,11-dione

Description: Baeyer-Villiger oxidation of 1,9-dibromopentacyclo[,6.03,10.05,9]undecane-8,11-dione (1,9-dibromo-PCU-8,11-dione) was performed by using an excess amount of m-chloroperbenzoic acid (3 equivalents) and resulted in the formation of the corresponding monolactone. The reaction would not proceed to the dilactone stage. The structure of the reaction product was established unequivocally via single crystal X-ray diffraction. Baeyer-Villiger oxidation of 1,9-dibromo-PCU-8,11-dione using ceric ammonium nitrate (CAN) was also performed and afforded a mixture of lactones. Only one of these lactones, which also contained an alkene functionality, could be isolated and characterized. 1,7-dibromo-PCU-8,11-dione was also reacted with CAN, yielding the mono-lactone, which has also been characterized.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2004
Creator: Akinola, Adeniyi O.